File size: 2,646 Bytes
bc68993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ad178
 
bc68993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ad178
bc68993
 
 
 
 
 
 
 
37ad178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc68993
 
 
 
37ad178
bc68993
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Sep26-Mixat-whisper-lg-3-transcript
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Sep26-Mixat-whisper-lg-3-transcript

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7722
- Wer: 40.9156

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.7871        | 0.4292 | 100  | 0.4161          | 34.9906 |
| 0.4974        | 0.8584 | 200  | 0.4319          | 33.8051 |
| 0.3796        | 1.2876 | 300  | 0.4348          | 39.1582 |
| 0.3711        | 1.7167 | 400  | 0.4504          | 38.4566 |
| 0.3527        | 2.1459 | 500  | 0.4676          | 41.7834 |
| 0.2699        | 2.5751 | 600  | 0.4600          | 37.4643 |
| 0.275         | 3.0043 | 700  | 0.4449          | 37.8945 |
| 0.1566        | 3.4335 | 800  | 0.5121          | 40.7568 |
| 0.1658        | 3.8627 | 900  | 0.5067          | 40.8252 |
| 0.1125        | 4.2918 | 1000 | 0.5469          | 41.1772 |
| 0.0913        | 4.7210 | 1100 | 0.5818          | 40.3803 |
| 0.0806        | 5.1502 | 1200 | 0.6051          | 41.2041 |
| 0.0519        | 5.5794 | 1300 | 0.5997          | 40.6908 |
| 0.0545        | 6.0086 | 1400 | 0.6158          | 41.0574 |
| 0.0323        | 6.4378 | 1500 | 0.6482          | 40.7617 |
| 0.034         | 6.8670 | 1600 | 0.6761          | 39.0140 |
| 0.0259        | 7.2961 | 1700 | 0.7324          | 42.2796 |
| 0.0249        | 7.7253 | 1800 | 0.7128          | 41.8616 |
| 0.021         | 8.1545 | 1900 | 0.7722          | 40.9156 |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.1
- Datasets 3.0.0
- Tokenizers 0.19.1