File size: 5,726 Bytes
4c2624c
ca5dd3d
 
 
 
 
 
 
 
 
 
 
 
4c2624c
ca5dd3d
 
 
 
b410a00
ca5dd3d
b410a00
ca5dd3d
e33be7f
ca5dd3d
 
 
 
a6e8ce8
993b839
 
 
 
ca5dd3d
 
 
 
 
b410a00
ca5dd3d
a6e8ce8
ca5dd3d
900ecde
 
ca5dd3d
 
c50d854
 
e33be7f
 
 
3df4496
 
 
 
 
 
 
e33be7f
 
 
 
 
 
 
ca5dd3d
e33be7f
 
3df4496
 
 
 
 
 
ca5dd3d
 
 
 
 
e33be7f
ca5dd3d
 
 
 
a6e8ce8
7591bd9
c50d854
ca5dd3d
 
 
 
 
a6e8ce8
 
 
 
 
 
ca5dd3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e8ce8
ca5dd3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
language: "en"
tags:
- text-to-speech
- TTS
- speech-synthesis
- fastspeech2
- speechbrain
license: "apache-2.0"
datasets:
- LJSpeech
metrics:
- mos
---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Text-to-Speech (TTS) with FastSpeech2 trained on LJSpeech

This repository provides all the necessary tools for Text-to-Speech (TTS)  with SpeechBrain using a [FastSpeech2](https://arxiv.org/abs/2006.04558) pretrained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/).

The pre-trained model takes texts or phonemes as input and produces a spectrogram in output. One can get the final waveform by applying a vocoder (e.g., HiFIGAN) on top of the generated spectrogram. It should be noted that if the input is text, we use a state-of-the-art grapheme-to-phoneme module to convert it to phonemes and then pass the phonemes to fastspeech2 model.


## Install SpeechBrain

```bash
git clone https://github.com/speechbrain/speechbrain.git
cd speechbrain
pip install -r requirements.txt
pip install --editable .           
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform Text-to-Speech (TTS) with FastSpeech2

```python
import torchaudio
from speechbrain.inference.TTS import FastSpeech2
from speechbrain.inference.vocoders import HIFIGAN

# Intialize TTS (tacotron2) and Vocoder (HiFIGAN)
fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir="pretrained_models/tts-fastspeech2-ljspeech")
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="pretrained_models/tts-hifigan-ljspeech")

# Run TTS with text input
input_text = "were the leaders in this luckless change; though our own Baskerville; who was at work some years before them; went much on the same lines;"

mel_output, durations, pitch, energy = fastspeech2.encode_text(
  [input_text],
  pace=1.0,        # scale up/down the speed
  pitch_rate=1.0,  # scale up/down the pitch
  energy_rate=1.0, # scale up/down the energy
)

# Running Vocoder (spectrogram-to-waveform)
waveforms = hifi_gan.decode_batch(mel_output)

# Save the waverform
torchaudio.save('example_TTS_input_text.wav', waveforms.squeeze(1), 22050)


# Run TTS with phoneme input
input_phonemes = ['W', 'ER', 'DH', 'AH', 'L', 'IY', 'D', 'ER', 'Z', 'IH', 'N', 'DH', 'IH', 'S', 'L', 'AH', 'K', 'L', 'AH', 'S', 'CH', 'EY', 'N', 'JH', 'spn', 'DH', 'OW', 'AW', 'ER', 'OW', 'N', 'B', 'AE', 'S', 'K', 'ER', 'V', 'IH', 'L', 'spn', 'HH', 'UW', 'W', 'AA', 'Z', 'AE', 'T', 'W', 'ER', 'K', 'S', 'AH', 'M', 'Y', 'IH', 'R', 'Z', 'B', 'IH', 'F', 'AO', 'R', 'DH', 'EH', 'M', 'spn', 'W', 'EH', 'N', 'T', 'M', 'AH', 'CH', 'AA', 'N', 'DH', 'AH', 'S', 'EY', 'M', 'L', 'AY', 'N', 'Z', 'spn']
mel_output, durations, pitch, energy = fastspeech2.encode_phoneme(
  [input_phonemes],
  pace=1.0,        # scale up/down the speed
  pitch_rate=1.0,  # scale up/down the pitch
  energy_rate=1.0, # scale up/down the energy
)

# Running Vocoder (spectrogram-to-waveform)
waveforms = hifi_gan.decode_batch(mel_output)

# Save the waverform
torchaudio.save('example_TTS_input_phoneme.wav', waveforms.squeeze(1), 22050)
```

If you want to generate multiple sentences in one-shot, you can do in this way:

```python
from speechbrain.inference.TTS import FastSpeech2
fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir="pretrained_models/tts-fastspeech2-ljspeech")
items = [
       "A quick brown fox jumped over the lazy dog",
       "How much wood would a woodchuck chuck?",
       "Never odd or even"
     ]
mel_outputs, durations, pitch, energy = fastspeech2.encode_text(
  items,
  pace=1.0,        # scale up/down the speed
  pitch_rate=1.0,  # scale up/down the pitch
  energy_rate=1.0, # scale up/down the energy
)
```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain.
To train it from scratch follow these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```bash
cd speechbrain
pip install -r requirements.txt
pip install -e .
```
3. Run Training:
```bash
cd recipes/LJSpeech/TTS/fastspeech2/
python train.py --device=cuda:0 --max_grad_norm=1.0 --data_folder=/your_folder/LJSpeech-1.1 hparams/train.yaml
```
You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/tqyp58ogejqfres/AAAtmq7cRoOR3XTsq0iSgyKBa?dl=0).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

# **About SpeechBrain**
- Website: https://speechbrain.github.io/
- Code: https://github.com/speechbrain/speechbrain/
- HuggingFace: https://huggingface.co./speechbrain/


# **Citing SpeechBrain**
Please, cite SpeechBrain if you use it for your research or business.

```bibtex
@misc{speechbrain,
  title={{SpeechBrain}: A General-Purpose Speech Toolkit},
  author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
  year={2021},
  eprint={2106.04624},
  archivePrefix={arXiv},
  primaryClass={eess.AS},
  note={arXiv:2106.04624}
}
```