speechbrain
French
English
speech-to-speech-translation
chaanks commited on
Commit
4a60a79
1 Parent(s): 8150753

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md CHANGED
@@ -1,3 +1,83 @@
1
  ---
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - fr
4
+ - en
5
+ inference: false
6
+ tags:
7
+ - speech-to-speech-translation
8
+ - speechbrain
9
  license: apache-2.0
10
+ datasets:
11
+ - CVSS
12
  ---
13
+
14
+
15
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
16
+ <br/><br/>
17
+
18
+ # Speech-to-Unit Translation trained on CVSS
19
+
20
+ This repository provides all the necessary tools for using a a speech-to-unit translation (S2UT) model using a pre-trained Wav2Vec 2.0 encoder and a transformer decoder on the [CVSS](https://arxiv.org/abs/2201.03713) dataset.
21
+ The implementation is based on [Textless Speech-to-Speech Translation](https://arxiv.org/abs/2112.08352) and [Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentatio](https://arxiv.org/abs/2204.02967) papers.
22
+
23
+ The pre-trained model take as input waveform and produces discrete self-supervised representations as output. Typically, a vocoder (e.g., HiFiGAN Unit) is utilized on top of the S2UT model to produce waveform.
24
+ To generate the discrete self-supervised representations, we employ a K-means clustering model trained on the 6th layer of HuBERT, with `k=100`.
25
+
26
+ ## Install SpeechBrain
27
+
28
+ First of all, please install tranformers and SpeechBrain with the following command:
29
+
30
+ ```
31
+ pip install speechbrain transformers==4.28.0
32
+ ```
33
+
34
+ Please notice that we encourage you to read our tutorials and learn more about
35
+ [SpeechBrain](https://speechbrain.github.io).
36
+
37
+
38
+ ### Perform speech-to-speech translation (S2ST) with S2UT model and the Vocoder
39
+ ```python
40
+ import torchaudio
41
+ from speechbrain.pretrained import EncoderDecoderS2UT
42
+ from speechbrain.pretrained import UnitHIFIGAN
43
+
44
+ # Intialize S2UT (Transformer) and Vocoder (HiFIGAN Unit)
45
+ s2ut = EncoderDecoderS2UT.from_hparams(source="speechbrain/s2st-transformer-fr-en-hubert-l6-k100-cvss", savedir=tmpdir_s2ut)
46
+ hifi_gan_unit = UnitHIFIGAN.from_hparams(source="speechbrain/tts-hifigan-unit-hubert-l6-k100-ljspeech", savedir=tmpdir_vocoder)
47
+
48
+ # Running the S2UT model
49
+ codes = s2ut.translate_file("speechbrain/s2st-transformer-fr-en-hubert-l6-k100-cvss/example-fr.wav")
50
+
51
+ # Running Vocoder (units-to-waveform)
52
+ waveforms = hifi_gan.decode_unit(codes)
53
+
54
+ # Save the waverform
55
+ torchaudio.save('example_TTS.wav',waveforms.squeeze(1), 16000)
56
+ ```
57
+
58
+ ### Inference on GPU
59
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
60
+
61
+
62
+ ### Limitations
63
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
64
+
65
+ #### Referencing SpeechBrain
66
+
67
+ ```
68
+ @misc{SB2021,
69
+ author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
70
+ title = {SpeechBrain},
71
+ year = {2021},
72
+ publisher = {GitHub},
73
+ journal = {GitHub repository},
74
+ howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
75
+ }
76
+ ```
77
+
78
+ #### About SpeechBrain
79
+ SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
80
+
81
+ Website: https://speechbrain.github.io/
82
+
83
+ GitHub: https://github.com/speechbrain/speechbrain