Commit
·
d24c3c9
1
Parent(s):
95c068c
added the missing files
Browse files- classifier_esc50.ckpt +3 -0
- embedding_model.ckpt +3 -0
- embedding_model_esc50ft.ckpt +3 -0
- hyperparams.yaml +226 -0
classifier_esc50.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e85ef49491db26ce50ee49753ed83cb7b7eb760d47f4c1a01fb2bdef0dcea704
|
3 |
+
size 1647311
|
embedding_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca6f7dcf4eb97e68fb0989e3fbc9c667c60eaa0c598753e86e7b07bac0729755
|
3 |
+
size 301999678
|
embedding_model_esc50ft.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:375b53b0107759f58b173759d9c439211a648970f3d0ea02a2ace179cf8550f7
|
3 |
+
size 301999678
|
hyperparams.yaml
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2022-11-21 from:
|
2 |
+
# /home/cem/Dropbox/speechbrain-1/recipes/ESC50/classification/hparams/cnn14.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# #################################
|
5 |
+
# Basic training parameters for sound classification using the ESC50 dataset.
|
6 |
+
# This recipe uses the ecapa-tdnn backbone for classification.
|
7 |
+
#
|
8 |
+
# Author:
|
9 |
+
# * Cem Subakan
|
10 |
+
# (based on the SpeechBrain UrbanSound8k recipe)
|
11 |
+
# #################################
|
12 |
+
|
13 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
14 |
+
seed: 11
|
15 |
+
__set_seed: !!python/object/apply:torch.manual_seed [11]
|
16 |
+
|
17 |
+
# Set up folders for reading from and writing to
|
18 |
+
# Dataset must already exist at `audio_data_folder`
|
19 |
+
data_folder: /data2/ESC-50-master
|
20 |
+
# e.g., /localscratch/UrbanSound8K
|
21 |
+
open_rir_folder: <data_folder>/RIRS # Change if needed
|
22 |
+
audio_data_folder: /data2/ESC-50-master/audio
|
23 |
+
|
24 |
+
# TODO the follwing folder will contain the resampled audio
|
25 |
+
# files (mono channel and config SR) to train on
|
26 |
+
#reasmpled_audio_data_folder: !ref <data_folder>/audio_mono16kHz
|
27 |
+
#
|
28 |
+
experiment_name: cnn14
|
29 |
+
output_folder: ./results/cnn14/11
|
30 |
+
save_folder: ./results/cnn14/11/save
|
31 |
+
train_log: ./results/cnn14/11/train_log.txt
|
32 |
+
|
33 |
+
test_only: false
|
34 |
+
|
35 |
+
# Tensorboard logs
|
36 |
+
use_tensorboard: false
|
37 |
+
tensorboard_logs_folder: ./results/cnn14/11/tb_logs/
|
38 |
+
|
39 |
+
# Path where data manifest files will be stored
|
40 |
+
train_annotation: /data2/ESC-50-master/manifest/train.json
|
41 |
+
valid_annotation: /data2/ESC-50-master/manifest/valid.json
|
42 |
+
test_annotation: /data2/ESC-50-master/manifest/test.json
|
43 |
+
|
44 |
+
# To standardize results, UrbanSound8k has pre-separated samples into
|
45 |
+
# 10 folds for multi-fold validation
|
46 |
+
train_fold_nums: [1, 2, 3]
|
47 |
+
valid_fold_nums: [4]
|
48 |
+
test_fold_nums: [5]
|
49 |
+
skip_manifest_creation: false
|
50 |
+
|
51 |
+
ckpt_interval_minutes: 15 # save checkpoint every N min
|
52 |
+
|
53 |
+
# Training parameters
|
54 |
+
number_of_epochs: 200
|
55 |
+
batch_size: 32
|
56 |
+
lr: 0.0002
|
57 |
+
base_lr: 0.00000001
|
58 |
+
max_lr: 0.0002
|
59 |
+
step_size: 65000
|
60 |
+
sample_rate: 44100
|
61 |
+
|
62 |
+
device: cpu
|
63 |
+
|
64 |
+
# Feature parameters
|
65 |
+
n_mels: 80
|
66 |
+
left_frames: 0
|
67 |
+
right_frames: 0
|
68 |
+
deltas: false
|
69 |
+
amp_to_db: true
|
70 |
+
normalize: true
|
71 |
+
|
72 |
+
# Number of classes
|
73 |
+
out_n_neurons: 50
|
74 |
+
|
75 |
+
# Note that it's actually important to shuffle the data here
|
76 |
+
# (or at the very least, not sort the data by duration)
|
77 |
+
# Also note that this does not violate the UrbanSound8k "no-shuffle" policy
|
78 |
+
# because this does not mix samples from folds in train to valid/test, only
|
79 |
+
# within train or valid, or test
|
80 |
+
shuffle: true
|
81 |
+
dataloader_options:
|
82 |
+
batch_size: 32
|
83 |
+
shuffle: true
|
84 |
+
num_workers: 0
|
85 |
+
|
86 |
+
# Functions
|
87 |
+
compute_features: &id003 !new:speechbrain.lobes.features.Fbank
|
88 |
+
n_mels: 80
|
89 |
+
left_frames: 0
|
90 |
+
right_frames: 0
|
91 |
+
deltas: false
|
92 |
+
sample_rate: 44100
|
93 |
+
n_fft: 1024
|
94 |
+
win_length: 20
|
95 |
+
hop_length: 10
|
96 |
+
|
97 |
+
use_pretrain: false
|
98 |
+
embedding_model: &id009 !new:recipes.ESC50.classification.custom_models.Cnn14
|
99 |
+
mel_bins: 80
|
100 |
+
emb_dim: 2048
|
101 |
+
|
102 |
+
classifier: &id010 !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
|
103 |
+
input_size: 2048
|
104 |
+
out_neurons: 50
|
105 |
+
lin_blocks: 1
|
106 |
+
|
107 |
+
epoch_counter: &id012 !new:speechbrain.utils.epoch_loop.EpochCounter
|
108 |
+
|
109 |
+
|
110 |
+
# If you do not want to use the pretrained separator you can simply delete pretrained_separator field.
|
111 |
+
limit: 200
|
112 |
+
|
113 |
+
|
114 |
+
augment_wavedrop: &id004 !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
115 |
+
sample_rate: 44100
|
116 |
+
speeds: [100]
|
117 |
+
|
118 |
+
augment_speed: &id005 !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
119 |
+
sample_rate: 44100
|
120 |
+
speeds: [95, 100, 105]
|
121 |
+
|
122 |
+
add_rev: &id006 !new:speechbrain.lobes.augment.EnvCorrupt
|
123 |
+
openrir_folder: /data2/ESC-50-master/RIRS
|
124 |
+
openrir_max_noise_len: 3.0 # seconds
|
125 |
+
reverb_prob: 1.0
|
126 |
+
noise_prob: 0.0
|
127 |
+
noise_snr_low: 0
|
128 |
+
noise_snr_high: 15
|
129 |
+
rir_scale_factor: 1.0
|
130 |
+
|
131 |
+
add_noise: &id007 !new:speechbrain.lobes.augment.EnvCorrupt
|
132 |
+
openrir_folder: /data2/ESC-50-master/RIRS
|
133 |
+
openrir_max_noise_len: 3.0 # seconds
|
134 |
+
reverb_prob: 0.0
|
135 |
+
noise_prob: 1.0
|
136 |
+
noise_snr_low: 0
|
137 |
+
noise_snr_high: 15
|
138 |
+
rir_scale_factor: 1.0
|
139 |
+
|
140 |
+
add_rev_noise: &id008 !new:speechbrain.lobes.augment.EnvCorrupt
|
141 |
+
openrir_folder: /data2/ESC-50-master/RIRS
|
142 |
+
openrir_max_noise_len: 3.0 # seconds
|
143 |
+
reverb_prob: 1.0
|
144 |
+
noise_prob: 1.0
|
145 |
+
noise_snr_low: 0
|
146 |
+
noise_snr_high: 15
|
147 |
+
rir_scale_factor: 1.0
|
148 |
+
|
149 |
+
|
150 |
+
# Definition of the augmentation pipeline.
|
151 |
+
# If concat_augment = False, the augmentation techniques are applied
|
152 |
+
# in sequence. If concat_augment = True, all the augmented signals
|
153 |
+
# # are concatenated in a single big batch.
|
154 |
+
|
155 |
+
augment_pipeline: []
|
156 |
+
concat_augment: true
|
157 |
+
|
158 |
+
mean_var_norm: &id011 !new:speechbrain.processing.features.InputNormalization
|
159 |
+
|
160 |
+
norm_type: sentence
|
161 |
+
std_norm: false
|
162 |
+
|
163 |
+
# pre-processing
|
164 |
+
n_fft: 1024
|
165 |
+
spec_mag_power: 0.5
|
166 |
+
hop_length: 11.6099
|
167 |
+
win_length: 23.2199
|
168 |
+
compute_stft: &id001 !new:speechbrain.processing.features.STFT
|
169 |
+
n_fft: 1024
|
170 |
+
hop_length: 11.6099
|
171 |
+
win_length: 23.2199
|
172 |
+
sample_rate: 44100
|
173 |
+
|
174 |
+
compute_fbank: &id002 !new:speechbrain.processing.features.Filterbank
|
175 |
+
n_mels: 80
|
176 |
+
n_fft: 1024
|
177 |
+
sample_rate: 44100
|
178 |
+
|
179 |
+
modules:
|
180 |
+
compute_stft: *id001
|
181 |
+
compute_fbank: *id002
|
182 |
+
compute_features: *id003
|
183 |
+
augment_wavedrop: *id004
|
184 |
+
augment_speed: *id005
|
185 |
+
add_rev: *id006
|
186 |
+
add_noise: *id007
|
187 |
+
add_rev_noise: *id008
|
188 |
+
embedding_model: *id009
|
189 |
+
classifier: *id010
|
190 |
+
mean_var_norm: *id011
|
191 |
+
compute_cost: !new:speechbrain.nnet.losses.LogSoftmaxWrapper
|
192 |
+
loss_fn: !new:speechbrain.nnet.losses.AdditiveAngularMargin
|
193 |
+
margin: 0.2
|
194 |
+
scale: 30
|
195 |
+
|
196 |
+
# compute_error: !name:speechbrain.nnet.losses.classification_error
|
197 |
+
|
198 |
+
opt_class: !name:torch.optim.Adam
|
199 |
+
lr: 0.0002
|
200 |
+
weight_decay: 0.000002
|
201 |
+
|
202 |
+
lr_annealing: !new:speechbrain.nnet.schedulers.CyclicLRScheduler
|
203 |
+
base_lr: 0.00000001
|
204 |
+
max_lr: 0.0002
|
205 |
+
step_size: 65000
|
206 |
+
|
207 |
+
# Logging + checkpoints
|
208 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
209 |
+
save_file: ./results/cnn14/11/train_log.txt
|
210 |
+
|
211 |
+
error_stats: !name:speechbrain.utils.metric_stats.MetricStats
|
212 |
+
metric: !name:speechbrain.nnet.losses.classification_error
|
213 |
+
reduction: batch
|
214 |
+
|
215 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
216 |
+
checkpoints_dir: ./results/cnn14/11/save
|
217 |
+
recoverables:
|
218 |
+
embedding_model: *id009
|
219 |
+
classifier: *id010
|
220 |
+
normalizer: *id011
|
221 |
+
counter: *id012
|
222 |
+
|
223 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
224 |
+
loadables:
|
225 |
+
embedding_model: !ref <embedding_model>
|
226 |
+
classifier: !ref <classifier>
|