Titouan commited on
Commit
3834b96
·
1 Parent(s): a7d9c24

first commit

Browse files
Files changed (7) hide show
  1. README.md +77 -0
  2. asr.ckpt +3 -0
  3. config.json +68 -0
  4. hyperparams.yaml +119 -0
  5. preprocessor_config.json +8 -0
  6. tokenizer.ckpt +0 -0
  7. wav2vec2.ckpt +3 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: "fr"
3
+ thumbnail:
4
+ tags:
5
+ - ASR
6
+ - CTC
7
+ - Attention
8
+ - pytorch
9
+ - speechbrain
10
+ - Transformer
11
+ license: "apache-2.0"
12
+ datasets:
13
+ - commonvoice
14
+ metrics:
15
+ - wer
16
+ - cer
17
+ ---
18
+
19
+ # CRDNN with CTC/Attention trained on CommonVoice French (No LM)
20
+
21
+ This repository provides all the necessary tools to perform automatic speech
22
+ recognition from an end-to-end system pretrained on CommonVoice (French Language) within
23
+ SpeechBrain. For a better experience, we encourage you to learn more about
24
+ [SpeechBrain](https://speechbrain.github.io). The given ASR model performance are:
25
+
26
+ | Release | Test CER | Test WER | GPUs |
27
+ |:-------------:|:--------------:|:--------------:| :--------:|
28
+ | 29-04-21 | 6.54 | 13.90 | 2xV100 32GB |
29
+
30
+ ## Pipeline description
31
+
32
+ This ASR system is composed of 2 different but linked blocks:
33
+ 1. Tokenizer (unigram) that transforms words into subword units and trained with
34
+ the train transcriptions (train.tsv) of CommonVoice (FR).
35
+ 3. Acoustic model (wav2vec2.0 + CTC/Attention). A pretrained wav2vec 2.0 model ([wav2vec2-large-xlsr-53-french](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-french)) is combined with two DNN layers and finetuned on CommonVoice FR.
36
+ The obtained final acoustic representation is given to the CTC and attention decoders.
37
+
38
+ ## Intended uses & limitations
39
+
40
+ This model has been primarily developed to be run within SpeechBrain as a pretrained ASR model
41
+ for the French language. Thanks to the flexibility of SpeechBrain, any of the 2 blocks
42
+ detailed above can be extracted and connected to your custom pipeline as long as SpeechBrain is
43
+ installed.
44
+
45
+ ## Install SpeechBrain
46
+
47
+ First of all, please install tranformers and SpeechBrain with the following command:
48
+
49
+ ```
50
+ pip install speechbrain transformers
51
+ ```
52
+
53
+ Please notice that we encourage you to read our tutorials and learn more about
54
+ [SpeechBrain](https://speechbrain.github.io).
55
+
56
+ ### Transcribing your own audio files (in French)
57
+
58
+ ```python
59
+ from speechbrain.pretrained import EncoderDecoderASR
60
+
61
+ asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-fr", savedir="pretrained_models/asr-crdnn-commonvoice-fr")
62
+ asr_model.transcribe_file("example-fr.wav")
63
+
64
+ ```
65
+
66
+ #### Referencing SpeechBrain
67
+
68
+ ```
69
+ @misc{SB2021,
70
+ author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
71
+ title = {SpeechBrain},
72
+ year = {2021},
73
+ publisher = {GitHub},
74
+ journal = {GitHub repository},
75
+ howpublished = {\url{https://github.com/speechbrain/speechbrain}},
76
+ }
77
+ ```
asr.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee40bc648d23dccd4d6d8cf77eb317aede679218ad192c96ad631921e7561024
3
+ size 60570064
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_dropout": 0.1,
3
+ "apply_spec_augment": true,
4
+ "architectures": [
5
+ "Wav2Vec2ForCTC"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "bos_token_id": 1,
9
+ "conv_bias": true,
10
+ "conv_dim": [
11
+ 512,
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512
18
+ ],
19
+ "conv_kernel": [
20
+ 10,
21
+ 3,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 2,
26
+ 2
27
+ ],
28
+ "conv_stride": [
29
+ 5,
30
+ 2,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2
36
+ ],
37
+ "ctc_loss_reduction": "sum",
38
+ "ctc_zero_infinity": false,
39
+ "do_stable_layer_norm": true,
40
+ "eos_token_id": 2,
41
+ "feat_extract_activation": "gelu",
42
+ "feat_extract_dropout": 0.0,
43
+ "feat_extract_norm": "layer",
44
+ "feat_proj_dropout": 0.1,
45
+ "final_dropout": 0.1,
46
+ "gradient_checkpointing": false,
47
+ "hidden_act": "gelu",
48
+ "hidden_dropout": 0.1,
49
+ "hidden_dropout_prob": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_feature_length": 10,
56
+ "mask_feature_prob": 0.0,
57
+ "mask_time_length": 10,
58
+ "mask_time_prob": 0.05,
59
+ "model_type": "wav2vec2",
60
+ "num_attention_heads": 16,
61
+ "num_conv_pos_embedding_groups": 16,
62
+ "num_conv_pos_embeddings": 128,
63
+ "num_feat_extract_layers": 7,
64
+ "num_hidden_layers": 24,
65
+ "pad_token_id": 0,
66
+ "transformers_version": "4.4.0.dev0",
67
+ "vocab_size": 49
68
+ }
hyperparams.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ################################
2
+ # Model: wav2vec2 + DNN + CTC/Attention
3
+ # Augmentation: SpecAugment
4
+ # Authors: Titouan Parcollet 2021
5
+ # ################################
6
+
7
+ sample_rate: 16000
8
+ wav2vec2_hub: facebook/wav2vec2-large-xlsr-53-french
9
+
10
+ # BPE parameters
11
+ token_type: unigram # ["unigram", "bpe", "char"]
12
+ character_coverage: 1.0
13
+
14
+ # Model parameters
15
+ activation: !name:torch.nn.LeakyReLU
16
+ dnn_layers: 2
17
+ dnn_neurons: 1024
18
+ emb_size: 128
19
+ dec_neurons: 1024
20
+
21
+ # Outputs
22
+ output_neurons: 500 # BPE size, index(blank/eos/bos) = 0
23
+
24
+ # Decoding parameters
25
+ # Be sure that the bos and eos index match with the BPEs ones
26
+ blank_index: 0
27
+ bos_index: 1
28
+ eos_index: 2
29
+ min_decode_ratio: 0.0
30
+ max_decode_ratio: 1.0
31
+ beam_size: 80
32
+ eos_threshold: 1.5
33
+ using_max_attn_shift: True
34
+ max_attn_shift: 140
35
+ ctc_weight_decode: 0.0
36
+ temperature: 1.50
37
+
38
+ enc: !new:speechbrain.lobes.models.VanillaNN.VanillaNN
39
+ input_shape: [null, null, 1024]
40
+ activation: !ref <activation>
41
+ dnn_blocks: !ref <dnn_layers>
42
+ dnn_neurons: !ref <dnn_neurons>
43
+
44
+ wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
45
+ source: !ref <wav2vec2_hub>
46
+ output_norm: True
47
+ freeze: True
48
+ pretrain: False
49
+ save_path: model_checkpoints
50
+
51
+ emb: !new:speechbrain.nnet.embedding.Embedding
52
+ num_embeddings: !ref <output_neurons>
53
+ embedding_dim: !ref <emb_size>
54
+
55
+ dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
56
+ enc_dim: !ref <dnn_neurons>
57
+ input_size: !ref <emb_size>
58
+ rnn_type: gru
59
+ attn_type: location
60
+ hidden_size: 1024
61
+ attn_dim: 1024
62
+ num_layers: 1
63
+ scaling: 1.0
64
+ channels: 10
65
+ kernel_size: 100
66
+ re_init: True
67
+ dropout: 0.15
68
+
69
+ ctc_lin: !new:speechbrain.nnet.linear.Linear
70
+ input_size: !ref <dnn_neurons>
71
+ n_neurons: !ref <output_neurons>
72
+
73
+ seq_lin: !new:speechbrain.nnet.linear.Linear
74
+ input_size: !ref <dec_neurons>
75
+ n_neurons: !ref <output_neurons>
76
+
77
+ log_softmax: !new:speechbrain.nnet.activations.Softmax
78
+ apply_log: True
79
+
80
+ ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
81
+ blank_index: !ref <blank_index>
82
+
83
+ seq_cost: !name:speechbrain.nnet.losses.nll_loss
84
+ label_smoothing: 0.1
85
+
86
+ asr_model: !new:torch.nn.ModuleList
87
+ - [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
88
+
89
+ tokenizer: !new:sentencepiece.SentencePieceProcessor
90
+
91
+ encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
92
+ wav2vec2: !ref <wav2vec2>
93
+ enc: !ref <enc>
94
+
95
+ decoder: !new:speechbrain.decoders.S2SRNNBeamSearcher
96
+ embedding: !ref <emb>
97
+ decoder: !ref <dec>
98
+ linear: !ref <seq_lin>
99
+ ctc_linear: !ref <ctc_lin>
100
+ bos_index: !ref <bos_index>
101
+ eos_index: !ref <eos_index>
102
+ blank_index: !ref <blank_index>
103
+ min_decode_ratio: !ref <min_decode_ratio>
104
+ max_decode_ratio: !ref <max_decode_ratio>
105
+ beam_size: !ref <beam_size>
106
+ eos_threshold: !ref <eos_threshold>
107
+ using_max_attn_shift: !ref <using_max_attn_shift>
108
+ max_attn_shift: !ref <max_attn_shift>
109
+ temperature: !ref <temperature>
110
+
111
+ modules:
112
+ encoder: !ref <encoder>
113
+ decoder: !ref <decoder>
114
+
115
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
116
+ loadables:
117
+ wav2vec2: !ref <wav2vec2>
118
+ asr: !ref <asr_model>
119
+ tokenizer: !ref <tokenizer>
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
tokenizer.ckpt ADDED
Binary file (244 kB). View file
 
wav2vec2.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5675c122faaa76ed0e81e658a98a7bd6e498cd79f2f171b158a6dae10985c49c
3
+ size 1261930757