|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample_rate: 16000 |
|
n_fft: 400 |
|
n_mels: 40 |
|
|
|
|
|
activation: !name:torch.nn.LeakyReLU |
|
dropout: 0.15 |
|
cnn_blocks: 2 |
|
cnn_channels: (128, 256) |
|
inter_layer_pooling_size: (2, 2) |
|
cnn_kernelsize: (3, 3) |
|
time_pooling_size: 4 |
|
rnn_class: !name:speechbrain.nnet.RNN.LSTM |
|
rnn_layers: 4 |
|
rnn_neurons: 1024 |
|
rnn_bidirectional: True |
|
dnn_blocks: 2 |
|
dnn_neurons: 512 |
|
emb_size: 128 |
|
dec_neurons: 1024 |
|
output_neurons: 1000 |
|
blank_index: 0 |
|
|
|
|
|
bos_index: 0 |
|
eos_index: 0 |
|
min_decode_ratio: 0.0 |
|
max_decode_ratio: 1.0 |
|
beam_size: 80 |
|
eos_threshold: 1.5 |
|
using_max_attn_shift: True |
|
max_attn_shift: 240 |
|
lm_weight: 0.50 |
|
coverage_penalty: 1.5 |
|
temperature: 1.25 |
|
temperature_lm: 1.25 |
|
|
|
normalizer: !new:speechbrain.processing.features.InputNormalization |
|
norm_type: global |
|
|
|
compute_features: !new:speechbrain.lobes.features.Fbank |
|
sample_rate: !ref <sample_rate> |
|
n_fft: !ref <n_fft> |
|
n_mels: !ref <n_mels> |
|
|
|
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN |
|
input_shape: [null, null, !ref <n_mels>] |
|
activation: !ref <activation> |
|
dropout: !ref <dropout> |
|
cnn_blocks: !ref <cnn_blocks> |
|
cnn_channels: !ref <cnn_channels> |
|
cnn_kernelsize: !ref <cnn_kernelsize> |
|
inter_layer_pooling_size: !ref <inter_layer_pooling_size> |
|
time_pooling: True |
|
using_2d_pooling: False |
|
time_pooling_size: !ref <time_pooling_size> |
|
rnn_class: !ref <rnn_class> |
|
rnn_layers: !ref <rnn_layers> |
|
rnn_neurons: !ref <rnn_neurons> |
|
rnn_bidirectional: !ref <rnn_bidirectional> |
|
rnn_re_init: True |
|
dnn_blocks: !ref <dnn_blocks> |
|
dnn_neurons: !ref <dnn_neurons> |
|
|
|
emb: !new:speechbrain.nnet.embedding.Embedding |
|
num_embeddings: !ref <output_neurons> |
|
embedding_dim: !ref <emb_size> |
|
|
|
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder |
|
enc_dim: !ref <dnn_neurons> |
|
input_size: !ref <emb_size> |
|
rnn_type: gru |
|
attn_type: location |
|
hidden_size: !ref <dec_neurons> |
|
attn_dim: 1024 |
|
num_layers: 1 |
|
scaling: 1.0 |
|
channels: 10 |
|
kernel_size: 100 |
|
re_init: True |
|
dropout: !ref <dropout> |
|
|
|
ctc_lin: !new:speechbrain.nnet.linear.Linear |
|
input_size: !ref <dnn_neurons> |
|
n_neurons: !ref <output_neurons> |
|
|
|
seq_lin: !new:speechbrain.nnet.linear.Linear |
|
input_size: !ref <dec_neurons> |
|
n_neurons: !ref <output_neurons> |
|
|
|
log_softmax: !new:speechbrain.nnet.activations.Softmax |
|
apply_log: True |
|
|
|
lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM |
|
output_neurons: !ref <output_neurons> |
|
embedding_dim: !ref <emb_size> |
|
activation: !name:torch.nn.LeakyReLU |
|
dropout: 0.0 |
|
rnn_layers: 2 |
|
rnn_neurons: 2048 |
|
dnn_blocks: 1 |
|
dnn_neurons: 512 |
|
return_hidden: True |
|
|
|
tokenizer: !new:sentencepiece.SentencePieceProcessor |
|
|
|
asr_model: !new:torch.nn.ModuleList |
|
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>] |
|
|
|
|
|
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential |
|
input_shape: [null, null, !ref <n_mels>] |
|
compute_features: !ref <compute_features> |
|
normalize: !ref <normalizer> |
|
model: !ref <enc> |
|
|
|
decoder: !new:speechbrain.decoders.S2SRNNBeamSearchLM |
|
embedding: !ref <emb> |
|
decoder: !ref <dec> |
|
linear: !ref <seq_lin> |
|
language_model: !ref <lm_model> |
|
bos_index: !ref <bos_index> |
|
eos_index: !ref <eos_index> |
|
min_decode_ratio: !ref <min_decode_ratio> |
|
max_decode_ratio: !ref <max_decode_ratio> |
|
beam_size: !ref <beam_size> |
|
eos_threshold: !ref <eos_threshold> |
|
using_max_attn_shift: !ref <using_max_attn_shift> |
|
max_attn_shift: !ref <max_attn_shift> |
|
coverage_penalty: !ref <coverage_penalty> |
|
lm_weight: !ref <lm_weight> |
|
temperature: !ref <temperature> |
|
temperature_lm: !ref <temperature_lm> |
|
|
|
|
|
modules: |
|
normalizer: !ref <normalizer> |
|
encoder: !ref <encoder> |
|
decoder: !ref <decoder> |
|
lm_model: !ref <lm_model> |
|
|
|
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer |
|
loadables: |
|
normalizer: !ref <normalizer> |
|
asr: !ref <asr_model> |
|
lm: !ref <lm_model> |
|
tokenizer: !ref <tokenizer> |
|
|