File size: 3,877 Bytes
ffff120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
tags:
- spacy
- token-classification
language:
- en
license: MIT
model-index:
- name: en_core_web_md
  results:
  - tasks:
      name: NER
      type: token-classification
      metrics:
      - name: Precision
        type: precision
        value: 0.853733758
      - name: Recall
        type: recall
        value: 0.8456530449
      - name: F Score
        type: f_score
        value: 0.8496741892
  - tasks:
      name: POS
      type: token-classification
      metrics:
      - name: Accuracy
        type: accuracy
        value: 0.9727831973
  - tasks:
      name: SENTER
      type: token-classification
      metrics:
      - name: Precision
        type: precision
        value: 0.9049104721
      - name: Recall
        type: recall
        value: 0.8801372122
      - name: F Score
        type: f_score
        value: 0.8923519379
  - tasks:
      name: UNLABELED_DEPENDENCIES
      type: token-classification
      metrics:
      - name: Accuracy
        type: accuracy
        value: 0.9186878782
  - tasks:
      name: LABELED_DEPENDENCIES
      type: token-classification
      metrics:
      - name: Accuracy
        type: accuracy
        value: 0.9186878782
---
### Details: https://spacy.io/models/en#en_core_web_md

English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.

| Feature | Description |
| --- | --- |
| **Name** | `en_core_web_md` |
| **Version** | `3.1.0` |
| **spaCy** | `>=3.1.0,<3.2.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 684830 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University)<br />[GloVe Common Crawl](https://nlp.stanford.edu/projects/glove/) (Jeffrey Pennington, Richard Socher, and Christopher D. Manning) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |

### Label Scheme

<details>

<summary>View label scheme (114 labels for 4 components)</summary>

| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
| **`senter`** | `I`, `S` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.93 |
| `TAG_ACC` | 97.28 |
| `DEP_UAS` | 91.87 |
| `DEP_LAS` | 90.05 |
| `ENTS_P` | 85.37 |
| `ENTS_R` | 84.57 |
| `ENTS_F` | 84.97 |
| `SENTS_P` | 90.49 |
| `SENTS_R` | 88.01 |
| `SENTS_F` | 89.24 |