import torch from torchvision.ops.boxes import box_area import random import time def bbox_iou(box1, box2, x1y1x2y2=True): """ Returns the IoU of two bounding boxes """ if x1y1x2y2: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] else: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1, 0) * torch.clamp(inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) # print(box1, box1.shape) # print(box2, box2.shape) return inter_area / (b1_area + b2_area - inter_area + 1e-16) def xywh2xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def xyxy2xywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2.0, (y0 + y1) / 2.0, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area def sampleNegBBox(box, CAsampleType, CAsampleNum, category=0, w=640, h=640): assert CAsampleType in ['random', 'attention', 'crossImage', 'crossBatch'] index = 0 negBox_list = [] # ori_center = [(box[0]+box[2])/2, (box[1]+box[3])/2] ori_w, ori_h = box[2]-box[0], box[3]-box[1] flag=0 while index < CAsampleNum: flag += 1 # print(flag) if CAsampleType == 'random': xNeg = torch.randint(1, w, (1,)) yNeg = torch.randint(1, h, (1,)) wNeg = ori_w + random.randint(torch.round(-ori_w * 0.1), torch.round(ori_w * 0.1)) hNeg = ori_h + random.randint(torch.round(-ori_h * 0.1), torch.round(ori_h * 0.1)) elif CAsampleType == 'attention': pass negBox = torch.zeros([4]) negBox[0], negBox[1], negBox[2], negBox[3] = xNeg - 0.5 * wNeg, yNeg - 0.5 * hNeg, xNeg + 0.5 * wNeg, yNeg + 0.5 * hNeg negBox = torch.round(negBox) # 加入越界条件筛选 invalid bbox if negBox[0] < 0 or negBox[1] < 0 or negBox[2] >= w or negBox[3] >= h: continue # 加入box冲突条件筛选 invalid bbox iou, union = box_iou(box.unsqueeze(0), negBox.unsqueeze(0)) if iou > 0.25 and flag < 300: continue negBox_list.append(negBox) index += 1 return negBox_list