|
|
|
""" |
|
Backbone modules. |
|
""" |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision |
|
from torch import nn |
|
from torchvision.models._utils import IntermediateLayerGetter |
|
from typing import Dict, List |
|
|
|
from utils.misc import NestedTensor, is_main_process |
|
|
|
from .position_encoding import build_position_encoding |
|
|
|
|
|
class FrozenBatchNorm2d(torch.nn.Module): |
|
""" |
|
BatchNorm2d where the batch statistics and the affine parameters are fixed. |
|
|
|
Copy-paste from torchvision.misc.ops with added eps before rqsrt, |
|
without which any other models than torchvision.models.resnet[18,34,50,101] |
|
produce nans. |
|
""" |
|
|
|
def __init__(self, n): |
|
super(FrozenBatchNorm2d, self).__init__() |
|
self.register_buffer("weight", torch.ones(n)) |
|
self.register_buffer("bias", torch.zeros(n)) |
|
self.register_buffer("running_mean", torch.zeros(n)) |
|
self.register_buffer("running_var", torch.ones(n)) |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
|
missing_keys, unexpected_keys, error_msgs): |
|
num_batches_tracked_key = prefix + 'num_batches_tracked' |
|
if num_batches_tracked_key in state_dict: |
|
del state_dict[num_batches_tracked_key] |
|
|
|
super(FrozenBatchNorm2d, self)._load_from_state_dict( |
|
state_dict, prefix, local_metadata, strict, |
|
missing_keys, unexpected_keys, error_msgs) |
|
|
|
def forward(self, x): |
|
|
|
|
|
w = self.weight.reshape(1, -1, 1, 1) |
|
b = self.bias.reshape(1, -1, 1, 1) |
|
rv = self.running_var.reshape(1, -1, 1, 1) |
|
rm = self.running_mean.reshape(1, -1, 1, 1) |
|
eps = 1e-5 |
|
scale = w * (rv + eps).rsqrt() |
|
bias = b - rm * scale |
|
return x * scale + bias |
|
|
|
|
|
class BackboneBase(nn.Module): |
|
|
|
def __init__(self, name:str, backbone: nn.Module, num_channels: int, return_interm_layers: bool): |
|
super().__init__() |
|
for name, parameter in backbone.named_parameters(): |
|
if 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: |
|
parameter.requires_grad_(False) |
|
if return_interm_layers: |
|
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} |
|
else: |
|
return_layers = {'layer4': "0"} |
|
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) |
|
self.num_channels = num_channels |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
xs = self.body(tensor_list.tensors) |
|
out: Dict[str, NestedTensor] = {} |
|
for name, x in xs.items(): |
|
m = tensor_list.mask |
|
assert m is not None |
|
mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] |
|
out[name] = NestedTensor(x, mask) |
|
return out |
|
|
|
|
|
class Backbone(BackboneBase): |
|
"""ResNet backbone with frozen BatchNorm.""" |
|
def __init__(self, name: str, |
|
return_interm_layers: bool, |
|
dilation: bool): |
|
|
|
backbone = getattr(torchvision.models, name)( |
|
replace_stride_with_dilation=[False, False, dilation], |
|
pretrained=False, norm_layer=FrozenBatchNorm2d) |
|
|
|
assert name in ('resnet50', 'resnet101') |
|
num_channels = 2048 |
|
super().__init__(name, backbone, num_channels, return_interm_layers) |
|
|
|
|
|
class Joiner(nn.Sequential): |
|
def __init__(self, backbone, position_embedding): |
|
super().__init__(backbone, position_embedding) |
|
|
|
def forward(self, tensor_list: NestedTensor): |
|
xs = self[0](tensor_list) |
|
out: List[NestedTensor] = [] |
|
pos = [] |
|
for name, x in xs.items(): |
|
out.append(x) |
|
|
|
pos.append(self[1](x).to(x.tensors.dtype)) |
|
|
|
return out, pos |
|
|
|
|
|
def build_backbone(args): |
|
position_embedding = build_position_encoding(args) |
|
|
|
return_interm_layers = False |
|
backbone = Backbone(args.backbone, return_interm_layers, args.dilation) |
|
model = Joiner(backbone, position_embedding) |
|
model.num_channels = backbone.num_channels |
|
return model |
|
|