|
import torch |
|
from torch import Tensor |
|
from torch.nn.init import xavier_uniform_ |
|
from torch.nn.init import constant_ |
|
from torch.nn.init import xavier_normal_ |
|
from torch.nn.parameter import Parameter |
|
from typing import Tuple, Optional |
|
from torch.nn.modules.module import Module |
|
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear as _LinearWithBias |
|
from torch.nn.functional import linear, pad, softmax, dropout |
|
from torch.overrides import has_torch_function, handle_torch_function |
|
|
|
import warnings |
|
import math |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiheadAttention(Module): |
|
r"""Allows the model to jointly attend to information |
|
from different representation subspaces. |
|
See reference: Attention Is All You Need |
|
|
|
.. math:: |
|
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O |
|
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) |
|
|
|
Args: |
|
embed_dim: total dimension of the model. |
|
num_heads: parallel attention heads. |
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0. |
|
bias: add bias as module parameter. Default: True. |
|
add_bias_kv: add bias to the key and value sequences at dim=0. |
|
add_zero_attn: add a new batch of zeros to the key and |
|
value sequences at dim=1. |
|
kdim: total number of features in key. Default: None. |
|
vdim: total number of features in value. Default: None. |
|
|
|
Note: if kdim and vdim are None, they will be set to embed_dim such that |
|
query, key, and value have the same number of features. |
|
|
|
Examples:: |
|
|
|
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) |
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value) |
|
""" |
|
bias_k: Optional[torch.Tensor] |
|
bias_v: Optional[torch.Tensor] |
|
|
|
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): |
|
super(MultiheadAttention, self).__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
|
|
|
if self._qkv_same_embed_dim is False: |
|
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) |
|
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) |
|
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) |
|
self.register_parameter('in_proj_weight', None) |
|
else: |
|
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) |
|
self.register_parameter('q_proj_weight', None) |
|
self.register_parameter('k_proj_weight', None) |
|
self.register_parameter('v_proj_weight', None) |
|
|
|
if bias: |
|
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) |
|
else: |
|
self.register_parameter('in_proj_bias', None) |
|
self.out_proj = _LinearWithBias(embed_dim, embed_dim) |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) |
|
self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
self._reset_parameters() |
|
|
|
def _reset_parameters(self): |
|
if self._qkv_same_embed_dim: |
|
xavier_uniform_(self.in_proj_weight) |
|
else: |
|
xavier_uniform_(self.q_proj_weight) |
|
xavier_uniform_(self.k_proj_weight) |
|
xavier_uniform_(self.v_proj_weight) |
|
|
|
if self.in_proj_bias is not None: |
|
constant_(self.in_proj_bias, 0.) |
|
constant_(self.out_proj.bias, 0.) |
|
if self.bias_k is not None: |
|
xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
xavier_normal_(self.bias_v) |
|
|
|
def __setstate__(self, state): |
|
|
|
if '_qkv_same_embed_dim' not in state: |
|
state['_qkv_same_embed_dim'] = True |
|
|
|
super(MultiheadAttention, self).__setstate__(state) |
|
|
|
def forward(self, query, key, value, key_padding_mask=None, |
|
need_weights=True, attn_mask=None): |
|
|
|
r""" |
|
Args: |
|
query, key, value: map a query and a set of key-value pairs to an output. |
|
See "Attention Is All You Need" for more details. |
|
key_padding_mask: if provided, specified padding elements in the key will |
|
be ignored by the attention. When given a binary mask and a value is True, |
|
the corresponding value on the attention layer will be ignored. When given |
|
a byte mask and a value is non-zero, the corresponding value on the attention |
|
layer will be ignored |
|
need_weights: output attn_output_weights. |
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all |
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch. |
|
|
|
Shape: |
|
- Inputs: |
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is |
|
the embedding dimension. |
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is |
|
the embedding dimension. |
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is |
|
the embedding dimension. |
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. |
|
If a ByteTensor is provided, the non-zero positions will be ignored while the position |
|
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the |
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. |
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. |
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, |
|
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked |
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend |
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` |
|
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor |
|
is provided, it will be added to the attention weight. |
|
|
|
- Outputs: |
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, |
|
E is the embedding dimension. |
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size, |
|
L is the target sequence length, S is the source sequence length. |
|
""" |
|
if not self._qkv_same_embed_dim: |
|
return multi_head_attention_forward( |
|
query, key, value, self.embed_dim, self.num_heads, |
|
self.in_proj_weight, self.in_proj_bias, |
|
self.bias_k, self.bias_v, self.add_zero_attn, |
|
self.dropout, self.out_proj.weight, self.out_proj.bias, |
|
training=self.training, |
|
key_padding_mask=key_padding_mask, need_weights=need_weights, |
|
attn_mask=attn_mask, use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, |
|
v_proj_weight=self.v_proj_weight) |
|
else: |
|
return multi_head_attention_forward( |
|
query, key, value, self.embed_dim, self.num_heads, |
|
self.in_proj_weight, self.in_proj_bias, |
|
self.bias_k, self.bias_v, self.add_zero_attn, |
|
self.dropout, self.out_proj.weight, self.out_proj.bias, |
|
training=self.training, |
|
key_padding_mask=key_padding_mask, need_weights=need_weights, |
|
attn_mask=attn_mask) |
|
|
|
def multi_head_attention_forward(query: Tensor, |
|
key: Tensor, |
|
value: Tensor, |
|
embed_dim_to_check: int, |
|
num_heads: int, |
|
in_proj_weight: Tensor, |
|
in_proj_bias: Tensor, |
|
bias_k: Optional[Tensor], |
|
bias_v: Optional[Tensor], |
|
add_zero_attn: bool, |
|
dropout_p: float, |
|
out_proj_weight: Tensor, |
|
out_proj_bias: Tensor, |
|
training: bool = True, |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
use_separate_proj_weight: bool = False, |
|
q_proj_weight: Optional[Tensor] = None, |
|
k_proj_weight: Optional[Tensor] = None, |
|
v_proj_weight: Optional[Tensor] = None, |
|
static_k: Optional[Tensor] = None, |
|
static_v: Optional[Tensor] = None |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
r""" |
|
Args: |
|
query, key, value: map a query and a set of key-value pairs to an output. |
|
See "Attention Is All You Need" for more details. |
|
embed_dim_to_check: total dimension of the model. |
|
num_heads: parallel attention heads. |
|
in_proj_weight, in_proj_bias: input projection weight and bias. |
|
bias_k, bias_v: bias of the key and value sequences to be added at dim=0. |
|
add_zero_attn: add a new batch of zeros to the key and |
|
value sequences at dim=1. |
|
dropout_p: probability of an element to be zeroed. |
|
out_proj_weight, out_proj_bias: the output projection weight and bias. |
|
training: apply dropout if is ``True``. |
|
key_padding_mask: if provided, specified padding elements in the key will |
|
be ignored by the attention. This is an binary mask. When the value is True, |
|
the corresponding value on the attention layer will be filled with -inf. |
|
need_weights: output attn_output_weights. |
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all |
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch. |
|
use_separate_proj_weight: the function accept the proj. weights for query, key, |
|
and value in different forms. If false, in_proj_weight will be used, which is |
|
a combination of q_proj_weight, k_proj_weight, v_proj_weight. |
|
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. |
|
static_k, static_v: static key and value used for attention operators. |
|
|
|
|
|
Shape: |
|
Inputs: |
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is |
|
the embedding dimension. |
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is |
|
the embedding dimension. |
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is |
|
the embedding dimension. |
|
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. |
|
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions |
|
will be unchanged. If a BoolTensor is provided, the positions with the |
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. |
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. |
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, |
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked |
|
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend |
|
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` |
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor |
|
is provided, it will be added to the attention weight. |
|
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, |
|
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. |
|
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, |
|
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. |
|
|
|
Outputs: |
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, |
|
E is the embedding dimension. |
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size, |
|
L is the target sequence length, S is the source sequence length. |
|
""" |
|
if not torch.jit.is_scripting(): |
|
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, |
|
out_proj_weight, out_proj_bias) |
|
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): |
|
return handle_torch_function( |
|
multi_head_attention_forward, tens_ops, query, key, value, |
|
embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, |
|
bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, |
|
out_proj_bias, training=training, key_padding_mask=key_padding_mask, |
|
need_weights=need_weights, attn_mask=attn_mask, |
|
use_separate_proj_weight=use_separate_proj_weight, |
|
q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, |
|
v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) |
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == embed_dim_to_check |
|
|
|
assert key.size(0) == value.size(0) and key.size(1) == value.size(1) |
|
|
|
head_dim = embed_dim // num_heads |
|
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" |
|
scaling = float(head_dim) ** -0.5 |
|
|
|
if not use_separate_proj_weight: |
|
if torch.equal(query, key) and torch.equal(key, value): |
|
|
|
q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) |
|
|
|
elif torch.equal(key, value): |
|
|
|
|
|
_b = in_proj_bias |
|
_start = 0 |
|
_end = embed_dim |
|
_w = in_proj_weight[_start:_end, :] |
|
if _b is not None: |
|
_b = _b[_start:_end] |
|
q = linear(query, _w, _b) |
|
|
|
if key is None: |
|
assert value is None |
|
k = None |
|
v = None |
|
else: |
|
|
|
|
|
_b = in_proj_bias |
|
_start = embed_dim |
|
_end = None |
|
_w = in_proj_weight[_start:, :] |
|
if _b is not None: |
|
_b = _b[_start:] |
|
k, v = linear(key, _w, _b).chunk(2, dim=-1) |
|
|
|
else: |
|
|
|
_b = in_proj_bias |
|
_start = 0 |
|
_end = embed_dim |
|
_w = in_proj_weight[_start:_end, :] |
|
if _b is not None: |
|
_b = _b[_start:_end] |
|
q = linear(query, _w, _b) |
|
|
|
|
|
_b = in_proj_bias |
|
_start = embed_dim |
|
_end = embed_dim * 2 |
|
_w = in_proj_weight[_start:_end, :] |
|
if _b is not None: |
|
_b = _b[_start:_end] |
|
k = linear(key, _w, _b) |
|
|
|
|
|
_b = in_proj_bias |
|
_start = embed_dim * 2 |
|
_end = None |
|
_w = in_proj_weight[_start:, :] |
|
if _b is not None: |
|
_b = _b[_start:] |
|
v = linear(value, _w, _b) |
|
else: |
|
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) |
|
len1, len2 = q_proj_weight_non_opt.size() |
|
assert len1 == embed_dim and len2 == query.size(-1) |
|
|
|
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) |
|
len1, len2 = k_proj_weight_non_opt.size() |
|
assert len1 == embed_dim and len2 == key.size(-1) |
|
|
|
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) |
|
len1, len2 = v_proj_weight_non_opt.size() |
|
assert len1 == embed_dim and len2 == value.size(-1) |
|
|
|
if in_proj_bias is not None: |
|
q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) |
|
k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) |
|
v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) |
|
else: |
|
q = linear(query, q_proj_weight_non_opt, in_proj_bias) |
|
k = linear(key, k_proj_weight_non_opt, in_proj_bias) |
|
v = linear(value, v_proj_weight_non_opt, in_proj_bias) |
|
q = q * scaling |
|
|
|
if attn_mask is not None: |
|
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ |
|
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ |
|
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) |
|
if attn_mask.dtype == torch.uint8: |
|
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") |
|
attn_mask = attn_mask.to(torch.bool) |
|
|
|
if attn_mask.dim() == 2: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: |
|
raise RuntimeError('The size of the 2D attn_mask is not correct.') |
|
elif attn_mask.dim() == 3: |
|
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: |
|
raise RuntimeError('The size of the 3D attn_mask is not correct.') |
|
else: |
|
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: |
|
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") |
|
key_padding_mask = key_padding_mask.to(torch.bool) |
|
|
|
if bias_k is not None and bias_v is not None: |
|
if static_k is None and static_v is None: |
|
k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = pad(attn_mask, (0, 1)) |
|
if key_padding_mask is not None: |
|
key_padding_mask = pad(key_padding_mask, (0, 1)) |
|
else: |
|
assert static_k is None, "bias cannot be added to static key." |
|
assert static_v is None, "bias cannot be added to static value." |
|
else: |
|
assert bias_k is None |
|
assert bias_v is None |
|
|
|
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) |
|
|
|
if static_k is not None: |
|
assert static_k.size(0) == bsz * num_heads |
|
assert static_k.size(2) == head_dim |
|
k = static_k |
|
|
|
if static_v is not None: |
|
assert static_v.size(0) == bsz * num_heads |
|
assert static_v.size(2) == head_dim |
|
v = static_v |
|
|
|
src_len = k.size(1) |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if add_zero_attn: |
|
src_len += 1 |
|
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) |
|
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = pad(attn_mask, (0, 1)) |
|
if key_padding_mask is not None: |
|
key_padding_mask = pad(key_padding_mask, (0, 1)) |
|
|
|
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) |
|
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] |
|
|
|
if attn_mask is not None: |
|
if attn_mask.dtype == torch.bool: |
|
attn_output_weights.masked_fill_(attn_mask, float('-inf')) |
|
else: |
|
attn_output_weights += attn_mask |
|
|
|
|
|
if key_padding_mask is not None: |
|
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) |
|
attn_output_weights = attn_output_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2), |
|
float('-inf'), |
|
) |
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) |
|
|
|
attn_output_weights = softmax( |
|
attn_output_weights, dim=-1) |
|
attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) |
|
|
|
attn_output = torch.bmm(attn_output_weights, v) |
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] |
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn_output = linear(attn_output, out_proj_weight, out_proj_bias) |
|
|
|
if need_weights: |
|
|
|
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) |
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads |
|
else: |
|
return attn_output, None |
|
|