MedRPG / med_rpg /data_loader.py
zy5830850
First model version
91ef820
# -*- coding: utf-8 -*-
"""
ReferIt, UNC, UNC+ and GRef referring image segmentation PyTorch dataset.
Define and group batches of images, segmentations and queries.
Based on:
https://github.com/chenxi116/TF-phrasecut-public/blob/master/build_batches.py
"""
import os
import re
# import cv2
import sys
import json
import torch
import numpy as np
import os.path as osp
import scipy.io as sio
import torch.utils.data as data
sys.path.append('.')
from PIL import Image
from transformers import AutoTokenizer, AutoModel
# from pytorch_pretrained_bert.tokenization import BertTokenizer
# from transformers import BertTokenizer
from utils.word_utils import Corpus
from utils.box_utils import sampleNegBBox
from utils.genome_utils import getCLSLabel
def read_examples(input_line, unique_id):
"""Read a list of `InputExample`s from an input file."""
examples = []
# unique_id = 0
line = input_line #reader.readline()
# if not line:
# break
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
examples.append(
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
# unique_id += 1
return examples
## Bert text encoding
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
def convert_examples_to_features(examples, seq_length, tokenizer, usemarker=None):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
if usemarker is not None:
# tokens_a = ['a', 'e', 'b', '*', 'c', 'd', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', '*', 'u']
marker_idx = [i for i,x in enumerate(tokens_a) if x=='*']
if marker_idx[1] > seq_length - 3 and len(tokens_a) - seq_length+1 < marker_idx[0]: #第二个*的下标不能大于17,且从后往前数第一个*不能溢出
tokens_a = tokens_a[-(seq_length-2):]
new_marker_idx = [i for i,x in enumerate(tokens_a) if x=='*']
if len(new_marker_idx) < 2: #说明第一个marker被删掉了
pass
elif len(tokens_a) - seq_length+1 >= marker_idx[0]:
max_len = min(marker_idx[1]-marker_idx[0]+1, seq_length-2)
tokens_a = tokens_a[marker_idx[0]: marker_idx[0]+max_len]
tokens_a[-1] = '*' #如果**的内容超出范围,强行把最后一位置为*
elif marker_idx[1]-marker_idx[0]<2:
tokens_a = [i for i in tokens_a if i != '*']
tokens_a = ['*'] + tokens_a + ['*'] #如果**连在一起,把**放到首尾两端
else:
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
features.append(
InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids))
return features
class DatasetNotFoundError(Exception):
pass
class TransVGDataset(data.Dataset):
SUPPORTED_DATASETS = {
'referit': {'splits': ('train', 'val', 'trainval', 'test')},
'unc': {
'splits': ('train', 'val', 'trainval', 'testA', 'testB'),
'params': {'dataset': 'refcoco', 'split_by': 'unc'}
},
'unc+': {
'splits': ('train', 'val', 'trainval', 'testA', 'testB'),
'params': {'dataset': 'refcoco+', 'split_by': 'unc'}
},
'gref': {
'splits': ('train', 'val'),
'params': {'dataset': 'refcocog', 'split_by': 'google'}
},
'gref_umd': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'refcocog', 'split_by': 'umd'}
},
'flickr': {
'splits': ('train', 'val', 'test')
},
'MS_CXR': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'MS_CXR', 'split_by': 'MS_CXR'}
},
'ChestXray8': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'ChestXray8', 'split_by': 'ChestXray8'}
},
'SGH_CXR_V1': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'SGH_CXR_V1', 'split_by': 'SGH_CXR_V1'}
}
}
def __init__(self, args, data_root, split_root='data', dataset='referit',
transform=None, return_idx=False, testmode=False,
split='train', max_query_len=128, lstm=False,
bert_model='bert-base-uncased'):
self.images = []
self.data_root = data_root
self.split_root = split_root
self.dataset = dataset
self.query_len = max_query_len
self.lstm = lstm
self.transform = transform
self.testmode = testmode
self.split = split
self.tokenizer = AutoTokenizer.from_pretrained(bert_model, do_lower_case=True)
self.return_idx=return_idx
self.args = args
self.ID_Categories = {1: 'Cardiomegaly', 2: 'Lung Opacity', 3:'Edema', 4: 'Consolidation', 5: 'Pneumonia', 6:'Atelectasis', 7: 'Pneumothorax', 8:'Pleural Effusion'}
assert self.transform is not None
if split == 'train':
self.augment = True
else:
self.augment = False
if self.dataset == 'MS_CXR':
self.dataset_root = osp.join(self.data_root, 'MS_CXR')
self.im_dir = self.dataset_root # 具体的图片路径保存在split中
elif self.dataset == 'ChestXray8':
self.dataset_root = osp.join(self.data_root, 'ChestXray8')
self.im_dir = self.dataset_root # 具体的图片路径保存在split中
elif self.dataset == 'SGH_CXR_V1':
self.dataset_root = osp.join(self.data_root, 'SGH_CXR_V1')
self.im_dir = self.dataset_root # 具体的图片路径保存在split中
elif self.dataset == 'referit':
self.dataset_root = osp.join(self.data_root, 'referit')
self.im_dir = osp.join(self.dataset_root, 'images')
self.split_dir = osp.join(self.dataset_root, 'splits')
elif self.dataset == 'flickr':
self.dataset_root = osp.join(self.data_root, 'Flickr30k')
self.im_dir = osp.join(self.dataset_root, 'flickr30k_images')
else: ## refcoco, etc.
self.dataset_root = osp.join(self.data_root, 'other')
self.im_dir = osp.join(
self.dataset_root, 'images', 'mscoco', 'images', 'train2014')
self.split_dir = osp.join(self.dataset_root, 'splits')
if not self.exists_dataset():
# self.process_dataset()
print('Please download index cache to data folder: \n \
https://drive.google.com/open?id=1cZI562MABLtAzM6YU4WmKPFFguuVr0lZ')
exit(0)
dataset_path = osp.join(self.split_root, self.dataset)
valid_splits = self.SUPPORTED_DATASETS[self.dataset]['splits']
if self.lstm:
self.corpus = Corpus()
corpus_path = osp.join(dataset_path, 'corpus.pth')
self.corpus = torch.load(corpus_path)
if split not in valid_splits:
raise ValueError(
'Dataset {0} does not have split {1}'.format(
self.dataset, split))
splits = [split]
if self.dataset != 'referit':
splits = ['train', 'val'] if split == 'trainval' else [split]
for split in splits:
imgset_file = '{0}_{1}.pth'.format(self.dataset, split)
imgset_path = osp.join(dataset_path, imgset_file)
self.images += torch.load(imgset_path)
def exists_dataset(self):
return osp.exists(osp.join(self.split_root, self.dataset))
def pull_item(self, idx):
info = {}
if self.dataset == 'MS_CXR':
# anno_id, image_id, category_id, img_file, bbox, width, height, phrase, phrase_marker = self.images[idx] # 核心三要素 img_file, bbox, phrase
anno_id, image_id, category_id, img_file, bbox, width, height, phrase = self.images[idx] # 核心三要素 img_file, bbox, phrase
info['anno_id'] = anno_id
info['category_id'] = category_id
elif self.dataset == 'ChestXray8':
anno_id, image_id, category_id, img_file, bbox, phrase, prompt_text = self.images[idx] # 核心三要素 img_file, bbox, phrase
info['anno_id'] = anno_id
info['category_id'] = category_id
# info['img_file'] = img_file
elif self.dataset == 'SGH_CXR_V1':
anno_id, image_id, category_id, img_file, bbox, phrase, patient_id = self.images[idx] # 核心三要素 img_file, bbox, phrase
info['anno_id'] = anno_id
info['category_id'] = category_id
elif self.dataset == 'flickr':
img_file, bbox, phrase = self.images[idx]
else:
img_file, _, bbox, phrase, attri = self.images[idx]
## box format: to x1y1x2y2
if not (self.dataset == 'referit' or self.dataset == 'flickr'):
bbox = np.array(bbox, dtype=int)
bbox[2], bbox[3] = bbox[0]+bbox[2], bbox[1]+bbox[3]
else:
bbox = np.array(bbox, dtype=int)
# img_file = 'files/p12/p12423759/s53349935/b8c7a778-2f7f712d-5c598645-6aeebbb3-66ffbcc7.jpg' # Experiments @fixImage
if self.args.ablation == 'onlyText':
img_file = 'files/p12/p12423759/s53349935/b8c7a778-2f7f712d-5c598645-6aeebbb3-66ffbcc7.jpg'
img_path = osp.join(self.im_dir, img_file)
info['img_path'] = img_path
img = Image.open(img_path).convert("RGB")
# img = cv2.imread(img_path)
# ## duplicate channel if gray image
# if img.shape[-1] > 1:
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# else:
# img = np.stack([img] * 3)
bbox = torch.tensor(bbox)
bbox = bbox.float()
# info['phrase_marker'] = phrase_marker
return img, phrase, bbox, info
def tokenize_phrase(self, phrase):
return self.corpus.tokenize(phrase, self.query_len)
def untokenize_word_vector(self, words):
return self.corpus.dictionary[words]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img, phrase, bbox, info = self.pull_item(idx)
# phrase = phrase.decode("utf-8").encode().lower()
phrase = phrase.lower()
if hasattr(self.args, 'CATextPoolType') and self.args.CATextPoolType == 'marker':
# TODO
phrase = info['phrase_marker']
info['phrase_record'] = phrase # for visualization # info: img_path, phrase_record, anno_id, category_id
input_dict = {'img': img, 'box': bbox, 'text': phrase}
if self.args.model_name == 'TransVG_ca' and self.split == 'train':
NegBBoxs = sampleNegBBox(bbox, self.args.CAsampleType, self.args.CAsampleNum) # negative bbox
input_dict = {'img': img, 'box': bbox, 'text': phrase, 'NegBBoxs': NegBBoxs}
if self.args.model_name == 'TransVG_gn' and self.split == 'train':
json_name = os.path.splitext(os.path.basename(info['img_path']))[0]+'_SceneGraph.json'
json_name = os.path.join(self.args.GNpath, json_name)
# 解析json, 得到所有的anatomy-level的分类label
gnLabel = getCLSLabel(json_name, bbox)
info['gnLabel'] = gnLabel
input_dict = self.transform(input_dict)
img = input_dict['img']
bbox = input_dict['box']
phrase = input_dict['text']
img_mask = input_dict['mask']
if self.args.model_name == 'TransVG_ca' and self.split == 'train':
info['NegBBoxs'] = [np.array(negBBox, dtype=np.float32) for negBBox in input_dict['NegBBoxs']]
if self.lstm:
phrase = self.tokenize_phrase(phrase)
word_id = phrase
word_mask = np.array(word_id>0, dtype=int)
else:
## encode phrase to bert input
examples = read_examples(phrase, idx)
if hasattr(self.args, 'CATextPoolType') and self.args.CATextPoolType == 'marker':
use_marker = 'yes'
else:
use_marker = None
features = convert_examples_to_features(
examples=examples, seq_length=self.query_len, tokenizer=self.tokenizer, usemarker=use_marker)
word_id = features[0].input_ids
word_mask = features[0].input_mask
if self.args.ablation == 'onlyImage':
word_mask = [0] * word_mask.__len__() # experiments @2
# if self.args.ablation == 'onlyText':
# img_mask = np.ones_like(np.array(img_mask))
if self.testmode:
return img, np.array(word_id, dtype=int), np.array(word_mask, dtype=int), \
np.array(bbox, dtype=np.float32), np.array(ratio, dtype=np.float32), \
np.array(dw, dtype=np.float32), np.array(dh, dtype=np.float32), self.images[idx][0]
else:
return img, np.array(img_mask), np.array(word_id, dtype=int), np.array(word_mask, dtype=int), np.array(bbox, dtype=np.float32), info