File size: 15,721 Bytes
91ef820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
# -*- coding: utf-8 -*-
"""
ReferIt, UNC, UNC+ and GRef referring image segmentation PyTorch dataset.
Define and group batches of images, segmentations and queries.
Based on:
https://github.com/chenxi116/TF-phrasecut-public/blob/master/build_batches.py
"""
import os
import re
# import cv2
import sys
import json
import torch
import numpy as np
import os.path as osp
import scipy.io as sio
import torch.utils.data as data
sys.path.append('.')
from PIL import Image
from transformers import AutoTokenizer, AutoModel
# from pytorch_pretrained_bert.tokenization import BertTokenizer
# from transformers import BertTokenizer
from utils.word_utils import Corpus
from utils.box_utils import sampleNegBBox
from utils.genome_utils import getCLSLabel
def read_examples(input_line, unique_id):
"""Read a list of `InputExample`s from an input file."""
examples = []
# unique_id = 0
line = input_line #reader.readline()
# if not line:
# break
line = line.strip()
text_a = None
text_b = None
m = re.match(r"^(.*) \|\|\| (.*)$", line)
if m is None:
text_a = line
else:
text_a = m.group(1)
text_b = m.group(2)
examples.append(
InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b))
# unique_id += 1
return examples
## Bert text encoding
class InputExample(object):
def __init__(self, unique_id, text_a, text_b):
self.unique_id = unique_id
self.text_a = text_a
self.text_b = text_b
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids):
self.unique_id = unique_id
self.tokens = tokens
self.input_ids = input_ids
self.input_mask = input_mask
self.input_type_ids = input_type_ids
def convert_examples_to_features(examples, seq_length, tokenizer, usemarker=None):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, seq_length - 3)
else:
if usemarker is not None:
# tokens_a = ['a', 'e', 'b', '*', 'c', 'd', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', '*', 'u']
marker_idx = [i for i,x in enumerate(tokens_a) if x=='*']
if marker_idx[1] > seq_length - 3 and len(tokens_a) - seq_length+1 < marker_idx[0]: #第二个*的下标不能大于17,且从后往前数第一个*不能溢出
tokens_a = tokens_a[-(seq_length-2):]
new_marker_idx = [i for i,x in enumerate(tokens_a) if x=='*']
if len(new_marker_idx) < 2: #说明第一个marker被删掉了
pass
elif len(tokens_a) - seq_length+1 >= marker_idx[0]:
max_len = min(marker_idx[1]-marker_idx[0]+1, seq_length-2)
tokens_a = tokens_a[marker_idx[0]: marker_idx[0]+max_len]
tokens_a[-1] = '*' #如果**的内容超出范围,强行把最后一位置为*
elif marker_idx[1]-marker_idx[0]<2:
tokens_a = [i for i in tokens_a if i != '*']
tokens_a = ['*'] + tokens_a + ['*'] #如果**连在一起,把**放到首尾两端
else:
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > seq_length - 2:
tokens_a = tokens_a[0:(seq_length - 2)]
tokens = []
input_type_ids = []
tokens.append("[CLS]")
input_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
input_type_ids.append(0)
tokens.append("[SEP]")
input_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
input_type_ids.append(1)
tokens.append("[SEP]")
input_type_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < seq_length:
input_ids.append(0)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == seq_length
assert len(input_mask) == seq_length
assert len(input_type_ids) == seq_length
features.append(
InputFeatures(
unique_id=example.unique_id,
tokens=tokens,
input_ids=input_ids,
input_mask=input_mask,
input_type_ids=input_type_ids))
return features
class DatasetNotFoundError(Exception):
pass
class TransVGDataset(data.Dataset):
SUPPORTED_DATASETS = {
'referit': {'splits': ('train', 'val', 'trainval', 'test')},
'unc': {
'splits': ('train', 'val', 'trainval', 'testA', 'testB'),
'params': {'dataset': 'refcoco', 'split_by': 'unc'}
},
'unc+': {
'splits': ('train', 'val', 'trainval', 'testA', 'testB'),
'params': {'dataset': 'refcoco+', 'split_by': 'unc'}
},
'gref': {
'splits': ('train', 'val'),
'params': {'dataset': 'refcocog', 'split_by': 'google'}
},
'gref_umd': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'refcocog', 'split_by': 'umd'}
},
'flickr': {
'splits': ('train', 'val', 'test')
},
'MS_CXR': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'MS_CXR', 'split_by': 'MS_CXR'}
},
'ChestXray8': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'ChestXray8', 'split_by': 'ChestXray8'}
},
'SGH_CXR_V1': {
'splits': ('train', 'val', 'test'),
'params': {'dataset': 'SGH_CXR_V1', 'split_by': 'SGH_CXR_V1'}
}
}
def __init__(self, args, data_root, split_root='data', dataset='referit',
transform=None, return_idx=False, testmode=False,
split='train', max_query_len=128, lstm=False,
bert_model='bert-base-uncased'):
self.images = []
self.data_root = data_root
self.split_root = split_root
self.dataset = dataset
self.query_len = max_query_len
self.lstm = lstm
self.transform = transform
self.testmode = testmode
self.split = split
self.tokenizer = AutoTokenizer.from_pretrained(bert_model, do_lower_case=True)
self.return_idx=return_idx
self.args = args
self.ID_Categories = {1: 'Cardiomegaly', 2: 'Lung Opacity', 3:'Edema', 4: 'Consolidation', 5: 'Pneumonia', 6:'Atelectasis', 7: 'Pneumothorax', 8:'Pleural Effusion'}
assert self.transform is not None
if split == 'train':
self.augment = True
else:
self.augment = False
if self.dataset == 'MS_CXR':
self.dataset_root = osp.join(self.data_root, 'MS_CXR')
self.im_dir = self.dataset_root # 具体的图片路径保存在split中
elif self.dataset == 'ChestXray8':
self.dataset_root = osp.join(self.data_root, 'ChestXray8')
self.im_dir = self.dataset_root # 具体的图片路径保存在split中
elif self.dataset == 'SGH_CXR_V1':
self.dataset_root = osp.join(self.data_root, 'SGH_CXR_V1')
self.im_dir = self.dataset_root # 具体的图片路径保存在split中
elif self.dataset == 'referit':
self.dataset_root = osp.join(self.data_root, 'referit')
self.im_dir = osp.join(self.dataset_root, 'images')
self.split_dir = osp.join(self.dataset_root, 'splits')
elif self.dataset == 'flickr':
self.dataset_root = osp.join(self.data_root, 'Flickr30k')
self.im_dir = osp.join(self.dataset_root, 'flickr30k_images')
else: ## refcoco, etc.
self.dataset_root = osp.join(self.data_root, 'other')
self.im_dir = osp.join(
self.dataset_root, 'images', 'mscoco', 'images', 'train2014')
self.split_dir = osp.join(self.dataset_root, 'splits')
if not self.exists_dataset():
# self.process_dataset()
print('Please download index cache to data folder: \n \
https://drive.google.com/open?id=1cZI562MABLtAzM6YU4WmKPFFguuVr0lZ')
exit(0)
dataset_path = osp.join(self.split_root, self.dataset)
valid_splits = self.SUPPORTED_DATASETS[self.dataset]['splits']
if self.lstm:
self.corpus = Corpus()
corpus_path = osp.join(dataset_path, 'corpus.pth')
self.corpus = torch.load(corpus_path)
if split not in valid_splits:
raise ValueError(
'Dataset {0} does not have split {1}'.format(
self.dataset, split))
splits = [split]
if self.dataset != 'referit':
splits = ['train', 'val'] if split == 'trainval' else [split]
for split in splits:
imgset_file = '{0}_{1}.pth'.format(self.dataset, split)
imgset_path = osp.join(dataset_path, imgset_file)
self.images += torch.load(imgset_path)
def exists_dataset(self):
return osp.exists(osp.join(self.split_root, self.dataset))
def pull_item(self, idx):
info = {}
if self.dataset == 'MS_CXR':
# anno_id, image_id, category_id, img_file, bbox, width, height, phrase, phrase_marker = self.images[idx] # 核心三要素 img_file, bbox, phrase
anno_id, image_id, category_id, img_file, bbox, width, height, phrase = self.images[idx] # 核心三要素 img_file, bbox, phrase
info['anno_id'] = anno_id
info['category_id'] = category_id
elif self.dataset == 'ChestXray8':
anno_id, image_id, category_id, img_file, bbox, phrase, prompt_text = self.images[idx] # 核心三要素 img_file, bbox, phrase
info['anno_id'] = anno_id
info['category_id'] = category_id
# info['img_file'] = img_file
elif self.dataset == 'SGH_CXR_V1':
anno_id, image_id, category_id, img_file, bbox, phrase, patient_id = self.images[idx] # 核心三要素 img_file, bbox, phrase
info['anno_id'] = anno_id
info['category_id'] = category_id
elif self.dataset == 'flickr':
img_file, bbox, phrase = self.images[idx]
else:
img_file, _, bbox, phrase, attri = self.images[idx]
## box format: to x1y1x2y2
if not (self.dataset == 'referit' or self.dataset == 'flickr'):
bbox = np.array(bbox, dtype=int)
bbox[2], bbox[3] = bbox[0]+bbox[2], bbox[1]+bbox[3]
else:
bbox = np.array(bbox, dtype=int)
# img_file = 'files/p12/p12423759/s53349935/b8c7a778-2f7f712d-5c598645-6aeebbb3-66ffbcc7.jpg' # Experiments @fixImage
if self.args.ablation == 'onlyText':
img_file = 'files/p12/p12423759/s53349935/b8c7a778-2f7f712d-5c598645-6aeebbb3-66ffbcc7.jpg'
img_path = osp.join(self.im_dir, img_file)
info['img_path'] = img_path
img = Image.open(img_path).convert("RGB")
# img = cv2.imread(img_path)
# ## duplicate channel if gray image
# if img.shape[-1] > 1:
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# else:
# img = np.stack([img] * 3)
bbox = torch.tensor(bbox)
bbox = bbox.float()
# info['phrase_marker'] = phrase_marker
return img, phrase, bbox, info
def tokenize_phrase(self, phrase):
return self.corpus.tokenize(phrase, self.query_len)
def untokenize_word_vector(self, words):
return self.corpus.dictionary[words]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img, phrase, bbox, info = self.pull_item(idx)
# phrase = phrase.decode("utf-8").encode().lower()
phrase = phrase.lower()
if hasattr(self.args, 'CATextPoolType') and self.args.CATextPoolType == 'marker':
# TODO
phrase = info['phrase_marker']
info['phrase_record'] = phrase # for visualization # info: img_path, phrase_record, anno_id, category_id
input_dict = {'img': img, 'box': bbox, 'text': phrase}
if self.args.model_name == 'TransVG_ca' and self.split == 'train':
NegBBoxs = sampleNegBBox(bbox, self.args.CAsampleType, self.args.CAsampleNum) # negative bbox
input_dict = {'img': img, 'box': bbox, 'text': phrase, 'NegBBoxs': NegBBoxs}
if self.args.model_name == 'TransVG_gn' and self.split == 'train':
json_name = os.path.splitext(os.path.basename(info['img_path']))[0]+'_SceneGraph.json'
json_name = os.path.join(self.args.GNpath, json_name)
# 解析json, 得到所有的anatomy-level的分类label
gnLabel = getCLSLabel(json_name, bbox)
info['gnLabel'] = gnLabel
input_dict = self.transform(input_dict)
img = input_dict['img']
bbox = input_dict['box']
phrase = input_dict['text']
img_mask = input_dict['mask']
if self.args.model_name == 'TransVG_ca' and self.split == 'train':
info['NegBBoxs'] = [np.array(negBBox, dtype=np.float32) for negBBox in input_dict['NegBBoxs']]
if self.lstm:
phrase = self.tokenize_phrase(phrase)
word_id = phrase
word_mask = np.array(word_id>0, dtype=int)
else:
## encode phrase to bert input
examples = read_examples(phrase, idx)
if hasattr(self.args, 'CATextPoolType') and self.args.CATextPoolType == 'marker':
use_marker = 'yes'
else:
use_marker = None
features = convert_examples_to_features(
examples=examples, seq_length=self.query_len, tokenizer=self.tokenizer, usemarker=use_marker)
word_id = features[0].input_ids
word_mask = features[0].input_mask
if self.args.ablation == 'onlyImage':
word_mask = [0] * word_mask.__len__() # experiments @2
# if self.args.ablation == 'onlyText':
# img_mask = np.ones_like(np.array(img_mask))
if self.testmode:
return img, np.array(word_id, dtype=int), np.array(word_mask, dtype=int), \
np.array(bbox, dtype=np.float32), np.array(ratio, dtype=np.float32), \
np.array(dw, dtype=np.float32), np.array(dh, dtype=np.float32), self.images[idx][0]
else:
return img, np.array(img_mask), np.array(word_id, dtype=int), np.array(word_mask, dtype=int), np.array(bbox, dtype=np.float32), info |