File size: 19,299 Bytes
91ef820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import torch
import numpy as np
import torch.nn.functional as F
import math
from utils.box_utils import bbox_iou, xywh2xyxy, xyxy2xywh, generalized_box_iou
from utils.misc import get_world_size
from torch.autograd import Variable
from opt_einsum import contract
def build_target(args, gt_bbox, pred, device):
batch_size = gt_bbox.size(0)
num_scales = len(pred)
coord_list, bbox_list = [], []
for scale_ii in range(num_scales):
this_stride = 32 // (2 ** scale_ii)
grid = args.size // this_stride
# Convert [x1, y1, x2, y2] to [x_c, y_c, w, h]
center_x = (gt_bbox[:, 0] + gt_bbox[:, 2]) / 2
center_y = (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2
box_w = gt_bbox[:, 2] - gt_bbox[:, 0]
box_h = gt_bbox[:, 3] - gt_bbox[:, 1]
coord = torch.stack((center_x, center_y, box_w, box_h), dim=1)
# Normalized by the image size
coord = coord / args.size
coord = coord * grid
coord_list.append(coord)
bbox_list.append(torch.zeros(coord.size(0), 3, 5, grid, grid))
best_n_list, best_gi, best_gj = [], [], []
for ii in range(batch_size):
anch_ious = []
for scale_ii in range(num_scales):
this_stride = 32 // (2 ** scale_ii)
grid = args.size // this_stride
# gi = coord_list[scale_ii][ii,0].long()
# gj = coord_list[scale_ii][ii,1].long()
# tx = coord_list[scale_ii][ii,0] - gi.float()
# ty = coord_list[scale_ii][ii,1] - gj.float()
gw = coord_list[scale_ii][ii,2]
gh = coord_list[scale_ii][ii,3]
anchor_idxs = [x + 3*scale_ii for x in [0,1,2]]
anchors = [args.anchors_full[i] for i in anchor_idxs]
scaled_anchors = [ (x[0] / (args.anchor_imsize/grid), \
x[1] / (args.anchor_imsize/grid)) for x in anchors]
## Get shape of gt box
# gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
# import pdb
# pdb.set_trace()
gt_box = torch.from_numpy(np.array([0, 0, gw.cpu().numpy(), gh.cpu().numpy()])).float().unsqueeze(0)
## Get shape of anchor box
anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((len(scaled_anchors), 2)), np.array(scaled_anchors)), 1))
## Calculate iou between gt and anchor shapes
anch_ious += list(bbox_iou(gt_box, anchor_shapes))
## Find the best matching anchor box
best_n = np.argmax(np.array(anch_ious))
best_scale = best_n // 3
best_grid = args.size//(32/(2**best_scale))
anchor_idxs = [x + 3*best_scale for x in [0,1,2]]
anchors = [args.anchors_full[i] for i in anchor_idxs]
scaled_anchors = [ (x[0] / (args.anchor_imsize/best_grid), \
x[1] / (args.anchor_imsize/best_grid)) for x in anchors]
gi = coord_list[best_scale][ii,0].long()
gj = coord_list[best_scale][ii,1].long()
tx = coord_list[best_scale][ii,0] - gi.float()
ty = coord_list[best_scale][ii,1] - gj.float()
gw = coord_list[best_scale][ii,2]
gh = coord_list[best_scale][ii,3]
tw = torch.log(gw / scaled_anchors[best_n%3][0] + 1e-16)
th = torch.log(gh / scaled_anchors[best_n%3][1] + 1e-16)
bbox_list[best_scale][ii, best_n%3, :, gj, gi] = torch.stack([tx, ty, tw, th, torch.ones(1).to(device).squeeze()])
best_n_list.append(int(best_n))
best_gi.append(gi)
best_gj.append(gj)
for ii in range(len(bbox_list)):
bbox_list[ii] = bbox_list[ii].to(device)
return bbox_list, best_gi, best_gj, best_n_list
def yolo_loss(pred_list, target, gi, gj, best_n_list, device, w_coord=5., w_neg=1./5, size_average=True):
mseloss = torch.nn.MSELoss(size_average=True)
celoss = torch.nn.CrossEntropyLoss(size_average=True)
num_scale = len(pred_list)
batch_size = pred_list[0].size(0)
pred_bbox = torch.zeros(batch_size, 4).to(device)
gt_bbox = torch.zeros(batch_size, 4).to(device)
for ii in range(batch_size):
pred_bbox[ii, 0:2] = torch.sigmoid(pred_list[best_n_list[ii]//3][ii, best_n_list[ii]%3,0:2, gj[ii], gi[ii]])
pred_bbox[ii, 2:4] = pred_list[best_n_list[ii]//3][ii, best_n_list[ii]%3, 2:4, gj[ii], gi[ii]]
gt_bbox[ii, :] = target[best_n_list[ii]//3][ii, best_n_list[ii]%3, :4, gj[ii], gi[ii]]
loss_x = mseloss(pred_bbox[:,0], gt_bbox[:,0])
loss_y = mseloss(pred_bbox[:,1], gt_bbox[:,1])
loss_w = mseloss(pred_bbox[:,2], gt_bbox[:,2])
loss_h = mseloss(pred_bbox[:,3], gt_bbox[:,3])
pred_conf_list, gt_conf_list = [], []
for scale_ii in range(num_scale):
pred_conf_list.append(pred_list[scale_ii][:,:,4,:,:].contiguous().view(batch_size,-1))
gt_conf_list.append(target[scale_ii][:,:,4,:,:].contiguous().view(batch_size,-1))
pred_conf = torch.cat(pred_conf_list, dim=1)
gt_conf = torch.cat(gt_conf_list, dim=1)
loss_conf = celoss(pred_conf, gt_conf.max(1)[1])
return (loss_x + loss_y + loss_w + loss_h) * w_coord + loss_conf
def trans_vg_loss(batch_pred, batch_target):
"""Compute the losses related to the bounding boxes,
including the L1 regression loss and the GIoU loss
"""
batch_size = batch_pred.shape[0]
# world_size = get_world_size()
num_boxes = batch_size
loss_bbox = F.l1_loss(batch_pred, batch_target, reduction='none')
loss_giou = 1 - torch.diag(generalized_box_iou(
xywh2xyxy(batch_pred),
xywh2xyxy(batch_target)
))
losses = {}
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
losses['loss_giou'] = loss_giou.sum() / num_boxes
return losses
def trans_vg_cls_loss(batch_pred, batch_target):
"""Compute the losses related to the disease prediction,
including the CE loss.
"""
return F.cross_entropy(batch_pred, batch_target, reduction='elementwise_mean')
def visuPooling(visu_src, target, att_weights=None):
"""pooling the visual features according to the target bbox
"""
visu_bboxs = []
bs = target.shape[0]
width = height = math.floor(math.sqrt(visu_src.shape[0]))
visu_src = visu_src.transpose(0, 1).view(bs, height, width, -1).contiguous() # b, h, w, d
att_weights_batch = []
for i in range(bs):
visu = visu_src[i]
bbox = target[i]
if att_weights is not None:
att_weight = att_weights[i][21:] # 取视觉特征的att部分
att_weight = att_weight.view(height, width, -1).contiguous()
bbox = xywh2xyxy(bbox)
bbox = [max(math.floor(bbox[0]*width), 0), max(math.floor(bbox[1]*height), 0), math.floor(bbox[2]*width), math.floor(bbox[3]*height)]
# 防止相等
if bbox[0] == bbox[2]:
bbox[0] = max(0, bbox[0] - 1)
bbox[2] = min(20, bbox[2] + 1)
if bbox[1] == bbox[3]:
bbox[1] = max(0, bbox[1] - 1)
bbox[3] = min(20, bbox[3] + 1)
# visu_bbox = visu[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
visu_bbox = visu[bbox[1]:bbox[3], bbox[0]:bbox[2], :] # bbox是 w, h 的顺序,到了特征里是 h, w的顺序,需要注意
visu_bbox = visu_bbox.mean(dim=0).mean(dim=0).unsqueeze(0)
visu_bboxs.append(visu_bbox)
if att_weights is not None:
att_weight_bbox = att_weight[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
att_weight_bbox = att_weight_bbox.mean(dim=0).mean(dim=0).unsqueeze(0)
att_weights_batch.append(att_weight_bbox)
visu_pool = torch.cat(visu_bboxs, dim=0)
if att_weights is not None:
att_weights_batch = torch.cat(att_weights_batch, dim=0)
return visu_pool, att_weights_batch
return visu_pool
def textPooling(text_src, text_mask, type='mask', att_weights=None, text_data=None, lcpTriple=None):
"""pooling the text features according to the text mask or cls
"""
bs = text_src.shape[1]
text_pools = []
text_src = text_src.transpose(0, 1).contiguous()
att_text_batch = []
att_reg_batch = []
if type == 'marker':
text_ids_batch = text_data.tensors
for i in range(bs):
text = text_src[i]
mask = text_mask[i]
word_count = (mask==False).int().sum()
if type == 'mask':
text_pool = text[:word_count, :].mean(dim=0).unsqueeze(0)
if att_weights is not None:
att_text = att_weights[i][1:21] # 取语言特征的att部分
att_text = att_text[:word_count, :].mean(dim=0).unsqueeze(0)
att_text_batch.append(att_text)
elif type == 'all':
text_pool = text.mean(dim=0).unsqueeze(0)
elif type == 'cls':
text_pool = text[0].unsqueeze(0)
if att_weights is not None:
if lcpTriple == 'lcpTriple':
att_reg = att_weights[i][0:1] # 取语言特征的att部分 8x421x421
att_reg_batch.append(att_reg)
att_text = att_weights[i][1:2] # 取语言特征的att部分 8x421x421
att_text_batch.append(att_text)
elif type == 'marker':
# 找下标是1008的marker Token
text_ids = text_ids_batch[i]
marker_idx = (text_ids == 1008).nonzero().squeeze()
# assert len(marker_idx.shape) > 1
#### 取marker的部分做loss ####
# first_marker_idx = marker_idx[0]
# text_pool = text[first_marker_idx:first_marker_idx+1]
# if att_weights is not None:
# att_text = att_weights[i][first_marker_idx:first_marker_idx+1] # 取marker语言特征的att部分 8x421x421 --> 1x421
# att_text_batch.append(att_text)
#### 取marker的部分做loss ####
#### 取marker中间的部分做loss ####
id1 = marker_idx[0]
id2 = marker_idx[1]
assert id2-id1>1
text_pool = text[id1+1:id2].mean(dim=0).unsqueeze(0)
if att_weights is not None:
att_text = att_weights[i][id1+1:id2].mean(dim=0).unsqueeze(0) # 取marker语言特征的att部分 8x421x421 --> 1x421
att_text_batch.append(att_text)
#### 取marker中间的部分做loss ####
text_pools.append(text_pool)
text_pools = torch.cat(text_pools, dim=0)
if att_weights is not None:
att_text_batch = torch.cat(att_text_batch, dim=0)
if lcpTriple == 'lcpTriple':
att_reg_batch = torch.cat(att_reg_batch, dim=0)
return text_pools, att_text_batch, att_reg_batch
return text_pools, att_text_batch
return text_pools
def trans_vg_btloss(visu_pool, text_pool, type='l1'):
if type == 'l1':
return F.l1_loss(visu_pool, text_pool, reduction='elementwise_mean')
elif type == 'l2':
return F.mse_loss(visu_pool, text_pool)
else:
raise ValueError('loss type not supportted ')
def trans_vg_caloss(pos_pool, neg_pools, text_pool, temperature=0.07, mode='max'):
text_pool = text_pool.unsqueeze(1) #8x1x256
pos_pool = pos_pool.unsqueeze(1) #8x1x256
# projection
if 'projection' in mode:
pass
visu_pools = torch.cat([pos_pool, neg_pools], dim=1)
# normalize
visu_pools = F.normalize(visu_pools, p=2, dim=2)
text_pool = F.normalize(text_pool, p=2, dim=2)
anchor_dot_contrast = torch.div(torch.matmul(text_pool, visu_pools.transpose(1,2)), temperature) # 8x1x6
# use -max trick
if 'max' in mode:
logit_max, _ = torch.max(anchor_dot_contrast, dim=2, keepdim=True)
logit = anchor_dot_contrast - logit_max.detach()
else:
logit = anchor_dot_contrast
exp_total = torch.exp(logit).sum(dim=2).squeeze()
logit_pos = logit[:, :, 0].squeeze()
loss = torch.mean(exp_total - logit_pos)
return loss
# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_crossbatch(cnn_code, _, rnn_code, eps=1e-8, temp=0.1):
batch_size = cnn_code.shape[0]
labels = Variable(torch.LongTensor(range(batch_size))).to(cnn_code.device)
if cnn_code.dim() == 2:
cnn_code = cnn_code.unsqueeze(0)
rnn_code = rnn_code.unsqueeze(0)
cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)
scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
scores0 = scores0 / norm0.clamp(min=eps) / temp3
# --> batch_size x batch_size
scores0 = scores0.squeeze()
scores1 = scores0.transpose(0, 1)
loss0 = torch.nn.CrossEntropyLoss()(scores0, labels)
loss1 = torch.nn.CrossEntropyLoss()(scores1, labels)
loss = loss0 + loss1
return loss
# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_inimage(pos_pool, neg_pools, rnn_code, eps=1e-8, temp3=0.1):
rnn_code = rnn_code.unsqueeze(1) #8x1x256
pos_pool = pos_pool.unsqueeze(1) #8x1x256
cnn_code = torch.cat([pos_pool, neg_pools], dim=1)
batch_size = cnn_code.shape[0]
labels = Variable(torch.LongTensor([0]*batch_size)).to(cnn_code.device) # 8
# if cnn_code.dim() == 2:
# cnn_code = cnn_code.unsqueeze(0)
# rnn_code = rnn_code.unsqueeze(0)
cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)
scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
scores0 = scores0 / norm0.clamp(min=eps) / temp3
# --> batch_size x batch_size
scores0 = scores0.squeeze()
loss = torch.nn.CrossEntropyLoss()(scores0, labels)
return loss
# ref to https://github.com/wzhouad/ATLOP/blob/main/model.py
def cal_lcp_triple(h_att, t_att, g_att, emb):
bs = h_att.shape[0]
ht_att = h_att * t_att * g_att
ht_att = ht_att / (ht_att.sum(1, keepdim=True) + 1e-5)
rss = []
for i in range(bs):
rs = contract("ld,rl->rd", emb[:, i, :], ht_att[i:i+1, :])
rss.append(rs)
rss = torch.cat(rss, dim=0)
return rss
# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_inimage_lcp_triple(pos_pool, neg_pools, rnn_code, att_pos, att_negs, att_text, att_reg, emb, eps=1e-8, temp3=0.1):
rnn_code = rnn_code.unsqueeze(1) #8x1x256
pos_pool = pos_pool.unsqueeze(1) #8x1x256
cnn_code = torch.cat([pos_pool, neg_pools], dim=1)
batch_size = cnn_code.shape[0]
labels = Variable(torch.LongTensor([0]*batch_size)).to(cnn_code.device) # 8
# lcp: 通过 att_pos, att_negs, att_text 重新计算新的embedding
tp = cal_lcp_triple(att_text, att_pos, att_reg, emb)
tns = []
neg_num = neg_pools.shape[1]
for j in range(neg_num):
tn = cal_lcp_triple(att_text, att_negs[:, j, :], att_reg, emb)
tns.append(tn.unsqueeze(1))
c = torch.cat([tp.unsqueeze(1)] + tns, dim=1)
# 把 c 加到原本的 emb_pool 上去
rnn_code = rnn_code.repeat(1, neg_num+1, 1)
rnn_code = rnn_code + c
cnn_code = cnn_code + c
cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)
scores0 = cnn_code * rnn_code
norm0 = cnn_code_norm * rnn_code_norm
# scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
# norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
scores0 = scores0 / norm0.clamp(min=eps) / temp3
# 8x6x256 --> 8x6x1
scores0 = scores0.sum(2)
loss = torch.nn.CrossEntropyLoss()(scores0, labels)
return loss
# ref to https://github.com/wzhouad/ATLOP/blob/main/model.py
def cal_lcp(h_att, t_att, emb):
bs = h_att.shape[0]
ht_att = h_att * t_att
ht_att = ht_att / (ht_att.sum(1, keepdim=True) + 1e-5)
rss = []
for i in range(bs):
rs = contract("ld,rl->rd", emb[:, i, :], ht_att[i:i+1, :])
rss.append(rs)
rss = torch.cat(rss, dim=0)
return rss
# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_inimage_lcp(pos_pool, neg_pools, rnn_code, att_pos, att_negs, att_text, emb, ws=None, wo=None, wc1=None, wc2=None, eps=1e-8, temp3=0.1):
rnn_code = rnn_code.unsqueeze(1) #8x1x256
pos_pool = pos_pool.unsqueeze(1) #8x1x256
cnn_code = torch.cat([pos_pool, neg_pools], dim=1)
batch_size = cnn_code.shape[0]
labels = Variable(torch.LongTensor([0]*batch_size)).to(cnn_code.device) # 8
# lcp: 通过 att_pos, att_negs, att_text 重新计算新的embedding
tp = cal_lcp(att_text, att_pos, emb)
tns = []
neg_num = neg_pools.shape[1]
for j in range(neg_num):
tn = cal_lcp(att_text, att_negs[:, j, :], emb)
tns.append(tn.unsqueeze(1))
c = torch.cat([tp.unsqueeze(1)] + tns, dim=1)
if wc1 is None:
# 把 c 加到原本的 emb_pool 上去
rnn_code = rnn_code.repeat(1, neg_num+1, 1)
rnn_code = rnn_code + c
cnn_code = cnn_code + c
else: # Do projection for text/image embeddings
# 先projection,再把 c 加到原本的 emb_pool 上去
rnn_code = rnn_code.repeat(1, neg_num+1, 1)
rnn_code = rnn_code + wc1(c)
cnn_code = cnn_code + wc1(c)
cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)
scores0 = cnn_code * rnn_code
norm0 = cnn_code_norm * rnn_code_norm
# scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
# norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
scores0 = scores0 / norm0.clamp(min=eps) / temp3
# 8x6x256 --> 8x6x1
scores0 = scores0.sum(2)
loss = torch.nn.CrossEntropyLoss()(scores0, labels)
return loss
# 仿照原本的box loss改写
def trans_vg_conBox(batch_pred, batch_target):
"""Compute the losses related to the bounding boxes,
including the L1 regression loss and the GIoU loss
"""
batch_size = batch_pred.shape[0]
# world_size = get_world_size()
num_boxes = batch_size
loss_bbox = F.l1_loss(batch_pred, batch_target, reduction='none')
loss_giou = 1 - torch.diag(generalized_box_iou(
xywh2xyxy(batch_pred),
xywh2xyxy(batch_target)
))
return loss_bbox.sum() / num_boxes, loss_giou.sum() / num_boxes
def CAlossFunc(epoch, max_epoch, type='poly'):
if type == 'poly':
power = 0.9
return (epoch/max_epoch)**power
def trans_vg_gn_loss(batch_pred, batch_target):
"""
including the Multi-BCE loss.
"""
return F.binary_cross_entropy_with_logits(batch_pred, batch_target) |