File size: 19,299 Bytes
91ef820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import torch
import numpy as np
import torch.nn.functional as F
import math

from utils.box_utils import bbox_iou, xywh2xyxy, xyxy2xywh, generalized_box_iou
from utils.misc import get_world_size
from torch.autograd import Variable
from opt_einsum import contract

def build_target(args, gt_bbox, pred, device):
    batch_size = gt_bbox.size(0)
    num_scales = len(pred)
    coord_list, bbox_list = [], []
    for scale_ii in range(num_scales):
        this_stride = 32 // (2 ** scale_ii)
        grid = args.size // this_stride
        # Convert [x1, y1, x2, y2] to [x_c, y_c, w, h]
        center_x = (gt_bbox[:, 0] + gt_bbox[:, 2]) / 2
        center_y = (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2
        box_w = gt_bbox[:, 2] - gt_bbox[:, 0]
        box_h = gt_bbox[:, 3] - gt_bbox[:, 1]
        coord = torch.stack((center_x, center_y, box_w, box_h), dim=1)
        # Normalized by the image size
        coord = coord / args.size
        coord = coord * grid
        coord_list.append(coord)
        bbox_list.append(torch.zeros(coord.size(0), 3, 5, grid, grid))

    best_n_list, best_gi, best_gj = [], [], []
    for ii in range(batch_size):
        anch_ious = []
        for scale_ii in range(num_scales):
            this_stride = 32 // (2 ** scale_ii)
            grid = args.size // this_stride
            # gi = coord_list[scale_ii][ii,0].long()
            # gj = coord_list[scale_ii][ii,1].long()
            # tx = coord_list[scale_ii][ii,0] - gi.float()
            # ty = coord_list[scale_ii][ii,1] - gj.float()
            gw = coord_list[scale_ii][ii,2]
            gh = coord_list[scale_ii][ii,3]

            anchor_idxs = [x + 3*scale_ii for x in [0,1,2]]
            anchors = [args.anchors_full[i] for i in anchor_idxs]
            scaled_anchors = [ (x[0] / (args.anchor_imsize/grid), \
                x[1] / (args.anchor_imsize/grid)) for x in anchors]

            ## Get shape of gt box
            # gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
            # import pdb
            # pdb.set_trace()

            gt_box = torch.from_numpy(np.array([0, 0, gw.cpu().numpy(), gh.cpu().numpy()])).float().unsqueeze(0)
            ## Get shape of anchor box
            anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((len(scaled_anchors), 2)), np.array(scaled_anchors)), 1))

            ## Calculate iou between gt and anchor shapes
            anch_ious += list(bbox_iou(gt_box, anchor_shapes))
        ## Find the best matching anchor box
        best_n = np.argmax(np.array(anch_ious))
        best_scale = best_n // 3

        best_grid = args.size//(32/(2**best_scale))
        anchor_idxs = [x + 3*best_scale for x in [0,1,2]]
        anchors = [args.anchors_full[i] for i in anchor_idxs]
        scaled_anchors = [ (x[0] / (args.anchor_imsize/best_grid), \
            x[1] / (args.anchor_imsize/best_grid)) for x in anchors]

        gi = coord_list[best_scale][ii,0].long()
        gj = coord_list[best_scale][ii,1].long()
        tx = coord_list[best_scale][ii,0] - gi.float()
        ty = coord_list[best_scale][ii,1] - gj.float()
        gw = coord_list[best_scale][ii,2]
        gh = coord_list[best_scale][ii,3]
        tw = torch.log(gw / scaled_anchors[best_n%3][0] + 1e-16)
        th = torch.log(gh / scaled_anchors[best_n%3][1] + 1e-16)

        bbox_list[best_scale][ii, best_n%3, :, gj, gi] = torch.stack([tx, ty, tw, th, torch.ones(1).to(device).squeeze()])
        best_n_list.append(int(best_n))
        best_gi.append(gi)
        best_gj.append(gj)

    for ii in range(len(bbox_list)):
        bbox_list[ii] = bbox_list[ii].to(device)
    return bbox_list, best_gi, best_gj, best_n_list


def yolo_loss(pred_list, target, gi, gj, best_n_list, device, w_coord=5., w_neg=1./5, size_average=True):
    mseloss = torch.nn.MSELoss(size_average=True)
    celoss = torch.nn.CrossEntropyLoss(size_average=True)
    num_scale = len(pred_list)
    batch_size = pred_list[0].size(0)

    pred_bbox = torch.zeros(batch_size, 4).to(device)
    gt_bbox = torch.zeros(batch_size, 4).to(device)
    for ii in range(batch_size):
        pred_bbox[ii, 0:2] = torch.sigmoid(pred_list[best_n_list[ii]//3][ii, best_n_list[ii]%3,0:2, gj[ii], gi[ii]])
        pred_bbox[ii, 2:4] = pred_list[best_n_list[ii]//3][ii, best_n_list[ii]%3, 2:4, gj[ii], gi[ii]]
        gt_bbox[ii, :] = target[best_n_list[ii]//3][ii, best_n_list[ii]%3, :4, gj[ii], gi[ii]]
    loss_x = mseloss(pred_bbox[:,0], gt_bbox[:,0])
    loss_y = mseloss(pred_bbox[:,1], gt_bbox[:,1])
    loss_w = mseloss(pred_bbox[:,2], gt_bbox[:,2])
    loss_h = mseloss(pred_bbox[:,3], gt_bbox[:,3])

    pred_conf_list, gt_conf_list = [], []
    for scale_ii in range(num_scale):
        pred_conf_list.append(pred_list[scale_ii][:,:,4,:,:].contiguous().view(batch_size,-1))
        gt_conf_list.append(target[scale_ii][:,:,4,:,:].contiguous().view(batch_size,-1))
    pred_conf = torch.cat(pred_conf_list, dim=1)
    gt_conf = torch.cat(gt_conf_list, dim=1)
    loss_conf = celoss(pred_conf, gt_conf.max(1)[1])
    return (loss_x + loss_y + loss_w + loss_h) * w_coord + loss_conf


def trans_vg_loss(batch_pred, batch_target):
    """Compute the losses related to the bounding boxes, 

       including the L1 regression loss and the GIoU loss

    """
    batch_size = batch_pred.shape[0]
    # world_size = get_world_size()
    num_boxes = batch_size

    loss_bbox = F.l1_loss(batch_pred, batch_target, reduction='none')
    loss_giou = 1 - torch.diag(generalized_box_iou(
        xywh2xyxy(batch_pred),
        xywh2xyxy(batch_target)
    ))

    losses = {}
    losses['loss_bbox'] = loss_bbox.sum() / num_boxes
    losses['loss_giou'] = loss_giou.sum() / num_boxes

    return losses

def trans_vg_cls_loss(batch_pred, batch_target):
    """Compute the losses related to the disease prediction,

       including the CE loss.

    """
    return F.cross_entropy(batch_pred, batch_target, reduction='elementwise_mean')

def visuPooling(visu_src, target, att_weights=None):
    """pooling the visual features according to the target bbox

    """
    visu_bboxs = []
    bs = target.shape[0]
    width = height = math.floor(math.sqrt(visu_src.shape[0]))
    visu_src = visu_src.transpose(0, 1).view(bs, height, width, -1).contiguous()  # b, h, w, d
    att_weights_batch = []
    for i in range(bs):
        visu = visu_src[i]
        bbox = target[i]
        if att_weights is not None:
            att_weight = att_weights[i][21:] # 取视觉特征的att部分
            att_weight = att_weight.view(height, width, -1).contiguous()
        bbox = xywh2xyxy(bbox)
        bbox = [max(math.floor(bbox[0]*width), 0), max(math.floor(bbox[1]*height), 0), math.floor(bbox[2]*width), math.floor(bbox[3]*height)]
        # 防止相等
        if bbox[0] == bbox[2]:
            bbox[0] = max(0, bbox[0] - 1)
            bbox[2] = min(20, bbox[2] + 1)
        if bbox[1] == bbox[3]:
            bbox[1] = max(0, bbox[1] - 1)
            bbox[3] = min(20, bbox[3] + 1)

        # visu_bbox = visu[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
        visu_bbox = visu[bbox[1]:bbox[3], bbox[0]:bbox[2], :]  # bbox是 w, h 的顺序,到了特征里是 h, w的顺序,需要注意
        visu_bbox = visu_bbox.mean(dim=0).mean(dim=0).unsqueeze(0)
        visu_bboxs.append(visu_bbox)
        if att_weights is not None:
            att_weight_bbox = att_weight[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
            att_weight_bbox = att_weight_bbox.mean(dim=0).mean(dim=0).unsqueeze(0)
            att_weights_batch.append(att_weight_bbox)
    visu_pool = torch.cat(visu_bboxs, dim=0)
    if att_weights is not None:
        att_weights_batch = torch.cat(att_weights_batch, dim=0)
        return visu_pool, att_weights_batch
    return visu_pool

def textPooling(text_src, text_mask, type='mask', att_weights=None, text_data=None, lcpTriple=None):
    """pooling the text features according to the text mask or cls

    """
    bs = text_src.shape[1]
    text_pools = []
    text_src = text_src.transpose(0, 1).contiguous()
    att_text_batch = []
    att_reg_batch = []
    if type == 'marker':
        text_ids_batch = text_data.tensors
    for i in range(bs):
        text = text_src[i]
        mask = text_mask[i]
        word_count = (mask==False).int().sum()
        if type == 'mask':
            text_pool = text[:word_count, :].mean(dim=0).unsqueeze(0)
            if att_weights is not None:
                att_text = att_weights[i][1:21] # 取语言特征的att部分
                att_text = att_text[:word_count, :].mean(dim=0).unsqueeze(0)
                att_text_batch.append(att_text)
        elif type == 'all':
            text_pool = text.mean(dim=0).unsqueeze(0)
        elif type == 'cls':
            text_pool = text[0].unsqueeze(0)
            if att_weights is not None:
                if lcpTriple == 'lcpTriple':
                    att_reg = att_weights[i][0:1] # 取语言特征的att部分 8x421x421
                    att_reg_batch.append(att_reg) 
                att_text = att_weights[i][1:2] # 取语言特征的att部分 8x421x421
                att_text_batch.append(att_text)
        elif type == 'marker':
            # 找下标是1008的marker Token
            text_ids = text_ids_batch[i]
            marker_idx = (text_ids == 1008).nonzero().squeeze()
            # assert len(marker_idx.shape) > 1
            #### 取marker的部分做loss ####
            # first_marker_idx = marker_idx[0]
            # text_pool = text[first_marker_idx:first_marker_idx+1]
            # if att_weights is not None:
            #     att_text = att_weights[i][first_marker_idx:first_marker_idx+1] # 取marker语言特征的att部分 8x421x421 --> 1x421
            #     att_text_batch.append(att_text)
            #### 取marker的部分做loss ####

            #### 取marker中间的部分做loss ####
            id1 = marker_idx[0]
            id2 = marker_idx[1]
            assert id2-id1>1
            text_pool = text[id1+1:id2].mean(dim=0).unsqueeze(0)
            if att_weights is not None:
                att_text = att_weights[i][id1+1:id2].mean(dim=0).unsqueeze(0) # 取marker语言特征的att部分 8x421x421 --> 1x421
                att_text_batch.append(att_text)
            #### 取marker中间的部分做loss ####


        text_pools.append(text_pool)

    text_pools = torch.cat(text_pools, dim=0)
    if att_weights is not None:
        att_text_batch = torch.cat(att_text_batch, dim=0)
        if lcpTriple == 'lcpTriple':
            att_reg_batch = torch.cat(att_reg_batch, dim=0)
            return text_pools, att_text_batch, att_reg_batch
        return text_pools, att_text_batch
    return text_pools


def trans_vg_btloss(visu_pool, text_pool, type='l1'):
    if type == 'l1':
        return F.l1_loss(visu_pool, text_pool, reduction='elementwise_mean')
    elif type == 'l2':
        return F.mse_loss(visu_pool, text_pool)
    else:
        raise ValueError('loss type not supportted ')


def trans_vg_caloss(pos_pool, neg_pools, text_pool, temperature=0.07, mode='max'):
    text_pool = text_pool.unsqueeze(1)  #8x1x256
    pos_pool = pos_pool.unsqueeze(1)  #8x1x256
    # projection
    if 'projection' in mode:
        pass
    visu_pools = torch.cat([pos_pool, neg_pools], dim=1)
    # normalize
    visu_pools = F.normalize(visu_pools, p=2, dim=2)
    text_pool = F.normalize(text_pool, p=2, dim=2)
    anchor_dot_contrast = torch.div(torch.matmul(text_pool, visu_pools.transpose(1,2)), temperature)  # 8x1x6
    # use -max trick
    if 'max' in mode:
        logit_max, _ = torch.max(anchor_dot_contrast, dim=2, keepdim=True)
        logit = anchor_dot_contrast - logit_max.detach()
    else:
        logit = anchor_dot_contrast
    exp_total = torch.exp(logit).sum(dim=2).squeeze()
    logit_pos = logit[:, :, 0].squeeze()
    loss = torch.mean(exp_total - logit_pos)
    return loss

# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_crossbatch(cnn_code, _, rnn_code, eps=1e-8, temp=0.1):
    batch_size = cnn_code.shape[0]
    labels = Variable(torch.LongTensor(range(batch_size))).to(cnn_code.device)

    if cnn_code.dim() == 2:
        cnn_code = cnn_code.unsqueeze(0)
        rnn_code = rnn_code.unsqueeze(0)

    cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
    rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)

    scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
    norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
    scores0 = scores0 / norm0.clamp(min=eps) / temp3

    # --> batch_size x batch_size
    scores0 = scores0.squeeze()

    scores1 = scores0.transpose(0, 1)
    loss0 = torch.nn.CrossEntropyLoss()(scores0, labels)
    loss1 = torch.nn.CrossEntropyLoss()(scores1, labels)
    loss = loss0 + loss1
    return loss


# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_inimage(pos_pool, neg_pools, rnn_code, eps=1e-8, temp3=0.1):
    rnn_code = rnn_code.unsqueeze(1)  #8x1x256
    pos_pool = pos_pool.unsqueeze(1)  #8x1x256
    cnn_code = torch.cat([pos_pool, neg_pools], dim=1)
    batch_size = cnn_code.shape[0]
    labels = Variable(torch.LongTensor([0]*batch_size)).to(cnn_code.device) # 8

    # if cnn_code.dim() == 2:
    #     cnn_code = cnn_code.unsqueeze(0)
    #     rnn_code = rnn_code.unsqueeze(0)

    cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
    rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)

    scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
    norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
    scores0 = scores0 / norm0.clamp(min=eps) / temp3

    # --> batch_size x batch_size
    scores0 = scores0.squeeze()
    loss = torch.nn.CrossEntropyLoss()(scores0, labels)
    return loss

# ref to https://github.com/wzhouad/ATLOP/blob/main/model.py
def cal_lcp_triple(h_att, t_att, g_att, emb):
    bs = h_att.shape[0]
    ht_att = h_att * t_att * g_att
    ht_att = ht_att / (ht_att.sum(1, keepdim=True) + 1e-5)
    rss = []
    for i in range(bs):
        rs = contract("ld,rl->rd", emb[:, i, :], ht_att[i:i+1, :])
        rss.append(rs)
    rss = torch.cat(rss, dim=0)
    return rss

# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_inimage_lcp_triple(pos_pool, neg_pools, rnn_code, att_pos, att_negs, att_text, att_reg, emb, eps=1e-8, temp3=0.1):
    rnn_code = rnn_code.unsqueeze(1)  #8x1x256
    pos_pool = pos_pool.unsqueeze(1)  #8x1x256
    cnn_code = torch.cat([pos_pool, neg_pools], dim=1)
    batch_size = cnn_code.shape[0]
    labels = Variable(torch.LongTensor([0]*batch_size)).to(cnn_code.device) # 8
    # lcp: 通过 att_pos, att_negs, att_text 重新计算新的embedding
    tp = cal_lcp_triple(att_text, att_pos, att_reg, emb)
    tns = []
    neg_num = neg_pools.shape[1]
    for j in range(neg_num):
        tn = cal_lcp_triple(att_text, att_negs[:, j, :], att_reg, emb)
        tns.append(tn.unsqueeze(1))
    c = torch.cat([tp.unsqueeze(1)] + tns, dim=1)
    
    # 把 c 加到原本的 emb_pool 上去
    rnn_code = rnn_code.repeat(1, neg_num+1, 1)
    rnn_code = rnn_code + c
    cnn_code = cnn_code + c

    
    cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
    rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)

    scores0 = cnn_code * rnn_code
    norm0 = cnn_code_norm * rnn_code_norm
    # scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
    # norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
    scores0 = scores0 / norm0.clamp(min=eps) / temp3

    # 8x6x256 --> 8x6x1
    scores0 = scores0.sum(2)
    loss = torch.nn.CrossEntropyLoss()(scores0, labels)
    return loss

# ref to https://github.com/wzhouad/ATLOP/blob/main/model.py
def cal_lcp(h_att, t_att, emb):
    bs = h_att.shape[0]
    ht_att = h_att * t_att
    ht_att = ht_att / (ht_att.sum(1, keepdim=True) + 1e-5)
    rss = []
    for i in range(bs):
        rs = contract("ld,rl->rd", emb[:, i, :], ht_att[i:i+1, :])
        rss.append(rs)
    rss = torch.cat(rss, dim=0)
    return rss

# copy and modify from https://github.com/marshuang80/gloria/blob/main/gloria/loss/gloria_loss.py
def trans_vg_caloss_inimage_lcp(pos_pool, neg_pools, rnn_code, att_pos, att_negs, att_text, emb, ws=None, wo=None, wc1=None, wc2=None, eps=1e-8, temp3=0.1):
    rnn_code = rnn_code.unsqueeze(1)  #8x1x256
    pos_pool = pos_pool.unsqueeze(1)  #8x1x256
    cnn_code = torch.cat([pos_pool, neg_pools], dim=1)
    batch_size = cnn_code.shape[0]
    labels = Variable(torch.LongTensor([0]*batch_size)).to(cnn_code.device) # 8
    # lcp: 通过 att_pos, att_negs, att_text 重新计算新的embedding
    tp = cal_lcp(att_text, att_pos, emb)
    tns = []
    neg_num = neg_pools.shape[1]
    for j in range(neg_num):
        tn = cal_lcp(att_text, att_negs[:, j, :], emb)
        tns.append(tn.unsqueeze(1))
    c = torch.cat([tp.unsqueeze(1)] + tns, dim=1)
    
    if wc1 is None:
        # 把 c 加到原本的 emb_pool 上去
        rnn_code = rnn_code.repeat(1, neg_num+1, 1)
        rnn_code = rnn_code + c
        cnn_code = cnn_code + c
    else:  # Do projection for text/image embeddings
        # 先projection,再把 c 加到原本的 emb_pool 上去
        rnn_code = rnn_code.repeat(1, neg_num+1, 1)
        rnn_code = rnn_code + wc1(c)
        cnn_code = cnn_code + wc1(c)
    
    cnn_code_norm = torch.norm(cnn_code, 2, dim=2, keepdim=True)
    rnn_code_norm = torch.norm(rnn_code, 2, dim=2, keepdim=True)

    scores0 = cnn_code * rnn_code
    norm0 = cnn_code_norm * rnn_code_norm
    # scores0 = torch.bmm(cnn_code, rnn_code.transpose(1, 2))
    # norm0 = torch.bmm(cnn_code_norm, rnn_code_norm.transpose(1, 2))
    scores0 = scores0 / norm0.clamp(min=eps) / temp3

    # 8x6x256 --> 8x6x1
    scores0 = scores0.sum(2)
    loss = torch.nn.CrossEntropyLoss()(scores0, labels)
    return loss

# 仿照原本的box loss改写
def trans_vg_conBox(batch_pred, batch_target):
    """Compute the losses related to the bounding boxes, 

       including the L1 regression loss and the GIoU loss

    """
    batch_size = batch_pred.shape[0]
    # world_size = get_world_size()
    num_boxes = batch_size

    loss_bbox = F.l1_loss(batch_pred, batch_target, reduction='none')
    loss_giou = 1 - torch.diag(generalized_box_iou(
        xywh2xyxy(batch_pred),
        xywh2xyxy(batch_target)
    ))
    return loss_bbox.sum() / num_boxes, loss_giou.sum() / num_boxes


def CAlossFunc(epoch, max_epoch, type='poly'):
    if type == 'poly':
        power = 0.9
        return (epoch/max_epoch)**power

def trans_vg_gn_loss(batch_pred, batch_target):
    """

       including the Multi-BCE loss.

    """
    return F.binary_cross_entropy_with_logits(batch_pred, batch_target)