Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from utils.util import EasyDict as edict | |
from utils.loss import Loss | |
from model.shape.implicit import Implicit | |
from model.shape.seen_coord_enc import CoordEncAtt, CoordEncRes | |
from model.shape.rgb_enc import RGBEncAtt, RGBEncRes | |
from model.depth.dpt_depth import DPTDepthModel | |
from utils.util import toggle_grad, interpolate_coordmap, get_child_state_dict | |
from utils.camera import unproj_depth, valid_norm_fac | |
from utils.layers import Bottleneck_Conv | |
class Graph(nn.Module): | |
def __init__(self, opt): | |
super().__init__() | |
# define the intrinsics head | |
self.intr_feat_channels = 768 | |
self.intr_head = nn.Sequential( | |
Bottleneck_Conv(self.intr_feat_channels, kernel_size=3), | |
Bottleneck_Conv(self.intr_feat_channels, kernel_size=3), | |
) | |
self.intr_pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.intr_proj = nn.Linear(self.intr_feat_channels, 3) | |
# init the last linear layer so it outputs zeros | |
nn.init.zeros_(self.intr_proj.weight) | |
nn.init.zeros_(self.intr_proj.bias) | |
# define the depth pred model based on omnidata | |
self.dpt_depth = DPTDepthModel(backbone='vitb_rn50_384') | |
# load the pretrained depth model | |
# when intrinsics need to be predicted we need to load that part as well | |
self.load_pretrained_depth(opt) | |
if opt.optim.fix_dpt: | |
toggle_grad(self.dpt_depth, False) | |
toggle_grad(self.intr_head, False) | |
toggle_grad(self.intr_proj, False) | |
# encoder that encode seen surface to impl conditioning vec | |
if opt.arch.depth.encoder == 'resnet': | |
opt.arch.depth.dsp = 1 | |
self.coord_encoder = CoordEncRes(opt) | |
else: | |
self.coord_encoder = CoordEncAtt(embed_dim=opt.arch.latent_dim, n_blocks=opt.arch.depth.n_blocks, | |
num_heads=opt.arch.num_heads, win_size=opt.arch.win_size//opt.arch.depth.dsp) | |
# rgb branch (not used in final model, keep here for extension) | |
if opt.arch.rgb.encoder == 'resnet': | |
self.rgb_encoder = RGBEncRes(opt) | |
elif opt.arch.rgb.encoder == 'transformer': | |
self.rgb_encoder = RGBEncAtt(img_size=opt.H, embed_dim=opt.arch.latent_dim, n_blocks=opt.arch.rgb.n_blocks, | |
num_heads=opt.arch.num_heads, win_size=opt.arch.win_size) | |
else: | |
self.rgb_encoder = None | |
# implicit function | |
feat_res = opt.H // opt.arch.win_size | |
self.impl_network = Implicit(feat_res**2, latent_dim=opt.arch.latent_dim*2 if self.rgb_encoder else opt.arch.latent_dim, | |
semantic=self.rgb_encoder is not None, n_channels=opt.arch.impl.n_channels, | |
n_blocks_attn=opt.arch.impl.att_blocks, n_layers_mlp=opt.arch.impl.mlp_layers, | |
num_heads=opt.arch.num_heads, posenc_3D=opt.arch.impl.posenc_3D, | |
mlp_ratio=opt.arch.impl.mlp_ratio, skip_in=opt.arch.impl.skip_in, | |
pos_perlayer=opt.arch.impl.posenc_perlayer) | |
# loss functions | |
self.loss_fns = Loss(opt) | |
def load_pretrained_depth(self, opt): | |
if opt.pretrain.depth: | |
# loading from our pretrained depth and intr model | |
if opt.device == 0: | |
print("loading dpt depth from {}...".format(opt.pretrain.depth)) | |
checkpoint = torch.load(opt.pretrain.depth, map_location="cuda:{}".format(opt.device)) | |
self.dpt_depth.load_state_dict(get_child_state_dict(checkpoint["graph"], "dpt_depth")) | |
# load the intr head | |
if opt.device == 0: | |
print("loading pretrained intr from {}...".format(opt.pretrain.depth)) | |
self.intr_head.load_state_dict(get_child_state_dict(checkpoint["graph"], "intr_head")) | |
self.intr_proj.load_state_dict(get_child_state_dict(checkpoint["graph"], "intr_proj")) | |
elif opt.arch.depth.pretrained: | |
# loading from omnidata weights | |
if opt.device == 0: | |
print("loading dpt depth from {}...".format(opt.arch.depth.pretrained)) | |
checkpoint = torch.load(opt.arch.depth.pretrained, map_location="cuda:{}".format(opt.device)) | |
state_dict = checkpoint['model_state_dict'] | |
self.dpt_depth.load_state_dict(state_dict) | |
def intr_param2mtx(self, opt, intr_params): | |
''' | |
Parameters: | |
opt: config | |
intr_params: [B, 3], [scale_f, delta_cx, delta_cy] | |
Return: | |
intr: [B, 3, 3] | |
''' | |
batch_size = len(intr_params) | |
f = 1.3875 | |
intr = torch.zeros(3, 3).float().to(intr_params.device).unsqueeze(0).repeat(batch_size, 1, 1) | |
intr[:, 2, 2] += 1 | |
# scale the focal length | |
# range: [-1, 1], symmetric | |
scale_f = torch.tanh(intr_params[:, 0]) | |
# range: [1/4, 4], symmetric | |
scale_f = torch.pow(4. , scale_f) | |
intr[:, 0, 0] += f * opt.W * scale_f | |
intr[:, 1, 1] += f * opt.H * scale_f | |
# shift the optic center, (at most to the image border) | |
shift_cx = torch.tanh(intr_params[:, 1]) * opt.W / 2 | |
shift_cy = torch.tanh(intr_params[:, 2]) * opt.H / 2 | |
intr[:, 0, 2] += opt.W / 2 + shift_cx | |
intr[:, 1, 2] += opt.H / 2 + shift_cy | |
return intr | |
def forward(self, opt, var, training=False, get_loss=True): | |
batch_size = len(var.idx) | |
# encode the rgb, [B, 3, H, W] -> [B, 1+H/(ws)*W/(ws), C], not used in our final model | |
var.latent_semantic = self.rgb_encoder(var.rgb_input_map) if self.rgb_encoder else None | |
# predict the depth map and intrinsics | |
var.depth_pred, intr_feat = self.dpt_depth(var.rgb_input_map, get_feat=True) | |
depth_map = var.depth_pred | |
# predict the intrinsics | |
intr_feat = self.intr_head(intr_feat) | |
intr_feat = self.intr_pool(intr_feat).squeeze(-1).squeeze(-1) | |
intr_params = self.intr_proj(intr_feat) | |
# [B, 3, 3] | |
var.intr_pred = self.intr_param2mtx(opt, intr_params) | |
intr_forward = var.intr_pred | |
# record the validity mask, [B, H*W] | |
var.validity_mask = (var.mask_input_map>0.5).float().view(batch_size, -1) | |
# project the depth to 3D points in view-centric frame | |
# [B, H*W, 3], in camera coordinates | |
seen_points_3D_pred = unproj_depth(opt, depth_map, intr_forward) | |
# [B, H*W, 3], [B, 1, H, W] (boolean) -> [B, 3], [B] | |
seen_points_mean_pred, seen_points_scale_pred = valid_norm_fac(seen_points_3D_pred, var.mask_input_map > 0.5) | |
# normalize the seen surface, [B, H*W, 3] | |
var.seen_points = (seen_points_3D_pred - seen_points_mean_pred.unsqueeze(1)) / seen_points_scale_pred.unsqueeze(-1).unsqueeze(-1) | |
var.seen_points[(var.mask_input_map<=0.5).view(batch_size, -1)] = 0 | |
# [B, 3, H, W] | |
seen_3D_map = var.seen_points.view(batch_size, opt.H, opt.W, 3).permute(0, 3, 1, 2).contiguous() | |
seen_3D_dsp, mask_dsp = interpolate_coordmap(seen_3D_map, var.mask_input_map, (opt.H//opt.arch.depth.dsp, opt.W//opt.arch.depth.dsp)) | |
# encode the depth, [B, 1, H/k, W/k] -> [B, 1+H/(ws)*W/(ws), C] | |
if opt.arch.depth.encoder == 'resnet': | |
var.latent_depth = self.coord_encoder(seen_3D_dsp, mask_dsp) | |
else: | |
var.latent_depth = self.coord_encoder(seen_3D_dsp.permute(0, 2, 3, 1).contiguous(), mask_dsp.squeeze(1)>0.5) | |
var.pose = var.pose_gt | |
# forward for loss calculation (only during training) | |
if 'gt_sample_points' in var and 'gt_sample_sdf' in var: | |
with torch.no_grad(): | |
# get the normalizing fac based on the GT seen surface | |
# project the GT depth to 3D points in view-centric frame | |
# [B, H*W, 3], in camera coordinates | |
seen_points_3D_gt = unproj_depth(opt, var.depth_input_map, var.intr) | |
# [B, H*W, 3], [B, 1, H, W] (boolean) -> [B, 3], [B] | |
seen_points_mean_gt, seen_points_scale_gt = valid_norm_fac(seen_points_3D_gt, var.mask_input_map > 0.5) | |
var.seen_points_gt = (seen_points_3D_gt - seen_points_mean_gt.unsqueeze(1)) / seen_points_scale_gt.unsqueeze(-1).unsqueeze(-1) | |
var.seen_points_gt[(var.mask_input_map<=0.5).view(batch_size, -1)] = 0 | |
# transform the GT points accordingly | |
# [B, 3, 3] | |
R_gt = var.pose_gt[:, :, :3] | |
# [B, 3, 1] | |
T_gt = var.pose_gt[:, :, 3:] | |
# [B, 3, N] | |
gt_sample_points_transposed = var.gt_sample_points.permute(0, 2, 1).contiguous() | |
# camera coordinates, [B, N, 3] | |
gt_sample_points_cam = (R_gt @ gt_sample_points_transposed + T_gt).permute(0, 2, 1).contiguous() | |
# normalize with seen std and mean, [B, N, 3] | |
var.gt_points_cam = (gt_sample_points_cam - seen_points_mean_gt.unsqueeze(1)) / seen_points_scale_gt.unsqueeze(-1).unsqueeze(-1) | |
# get near-surface points for visualization | |
# [B, 100, 3] | |
close_surf_idx = torch.topk(var.gt_sample_sdf.abs(), k=100, dim=1, largest=False)[1].unsqueeze(-1).repeat(1, 1, 3) | |
# [B, 100, 3] | |
var.gt_surf_points = torch.gather(var.gt_points_cam, dim=1, index=close_surf_idx) | |
# [B, N], [B, N, 1+feat_res**2], inference the impl_network for 3D loss | |
var.pred_sample_occ, attn = self.impl_network(var.latent_depth, var.latent_semantic, var.gt_points_cam) | |
# calculate the loss if needed | |
if get_loss: | |
loss = self.compute_loss(opt, var, training) | |
return var, loss | |
return var | |
def compute_loss(self, opt, var, training=False): | |
loss = edict() | |
if opt.loss_weight.depth is not None: | |
loss.depth = self.loss_fns.depth_loss(var.depth_pred, var.depth_input_map, var.mask_input_map) | |
if opt.loss_weight.intr is not None and training: | |
loss.intr = self.loss_fns.intr_loss(var.seen_points, var.seen_points_gt, var.validity_mask) | |
if opt.loss_weight.shape is not None and training: | |
loss.shape = self.loss_fns.shape_loss(var.pred_sample_occ, var.gt_sample_sdf) | |
return loss | |