Spaces:
Build error
Build error
File size: 15,025 Bytes
414b431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import os, sys, time
import shutil
import datetime
import torch
import torch.nn.functional as torch_F
import socket
import contextlib
import socket
import torch.distributed as dist
from collections import defaultdict, deque
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def print_eval(opt, loss=None, chamfer=None, depth_metrics=None):
message = "[eval] "
if loss is not None: message += "loss:{}".format("{:.3e}".format(loss.all))
if chamfer is not None:
message += " chamfer:{}|{}|{}".format("{:.4f}".format(chamfer[0]),
"{:.4f}".format(chamfer[1]),
"{:.4f}".format((chamfer[0]+chamfer[1])/2))
if depth_metrics is not None:
for k, v in depth_metrics.items():
message += "{}:{}, ".format(k, "{:.4f}".format(v))
message = message[:-2]
print(message)
def update_timer(opt, timer, ep, it_per_ep):
momentum = 0.99
timer.elapsed = time.time()-timer.start
timer.it = timer.it_end-timer.it_start
# compute speed with moving average
timer.it_mean = timer.it_mean*momentum+timer.it*(1-momentum) if timer.it_mean is not None else timer.it
timer.arrival = timer.it_mean*it_per_ep*(opt.max_epoch-ep)
# move tensors to device in-place
def move_to_device(X, device):
if isinstance(X, dict):
for k, v in X.items():
X[k] = move_to_device(v, device)
elif isinstance(X, list):
for i, e in enumerate(X):
X[i] = move_to_device(e, device)
elif isinstance(X, tuple) and hasattr(X, "_fields"): # collections.namedtuple
dd = X._asdict()
dd = move_to_device(dd, device)
return type(X)(**dd)
elif isinstance(X, torch.Tensor):
return X.to(device=device, non_blocking=True)
return X
# detach tensors
def detach_tensors(X):
if isinstance(X, dict):
for k, v in X.items():
X[k] = detach_tensors(v)
elif isinstance(X, list):
for i, e in enumerate(X):
X[i] = detach_tensors(e)
elif isinstance(X, tuple) and hasattr(X, "_fields"): # collections.namedtuple
dd = X._asdict()
dd = detach_tensors(dd)
return type(X)(**dd)
elif isinstance(X, torch.Tensor):
return X.detach()
return X
# this recursion seems to only work for the outer loop when dict_type is not dict
def to_dict(D, dict_type=dict):
D = dict_type(D)
for k, v in D.items():
if isinstance(v, dict):
D[k] = to_dict(v, dict_type)
return D
def get_child_state_dict(state_dict, key):
out_dict = {}
for k, v in state_dict.items():
if k.startswith("module."):
param_name = k[7:]
else:
param_name = k
if param_name.startswith("{}.".format(key)):
out_dict[".".join(param_name.split(".")[1:])] = v
return out_dict
def resume_checkpoint(opt, model, best):
load_name = "{0}/best.ckpt".format(opt.output_path) if best else "{0}/latest.ckpt".format(opt.output_path)
checkpoint = torch.load(load_name, map_location=torch.device(opt.device))
model.graph.module.load_state_dict(checkpoint["graph"], strict=True)
# load the training stats
for key in model.__dict__:
if key.split("_")[0] in ["optim", "sched", "scaler"] and key in checkpoint:
if opt.device == 0: print("restoring {}...".format(key))
getattr(model, key).load_state_dict(checkpoint[key])
# also need to record ep, it, best_val if we are returning
ep, it = checkpoint["epoch"], checkpoint["iter"]
best_val, best_ep = checkpoint["best_val"], checkpoint["best_ep"] if "best_ep" in checkpoint else 0
print("resuming from epoch {0} (iteration {1})".format(ep, it))
return ep, it, best_val, best_ep
def load_checkpoint(opt, model, load_name):
# load_name as to be given
checkpoint = torch.load(load_name, map_location=torch.device(opt.device))
# load individual (possibly partial) children modules
for name, child in model.graph.module.named_children():
child_state_dict = get_child_state_dict(checkpoint["graph"], name)
if child_state_dict:
if opt.device == 0: print("restoring {}...".format(name))
child.load_state_dict(child_state_dict, strict=True)
else:
if opt.device == 0: print("skipping {}...".format(name))
return None, None, None, None
def restore_checkpoint(opt, model, load_name=None, resume=False, best=False, evaluate=False):
# we cannot load and resume at the same time
assert not (load_name is not None and resume)
# when resuming we want everything to be the same
if resume:
ep, it, best_val, best_ep = resume_checkpoint(opt, model, best)
# loading is more flexible, as we can only load parts of the model
else:
ep, it, best_val, best_ep = load_checkpoint(opt, model, load_name)
return ep, it, best_val, best_ep
def save_checkpoint(opt, model, ep, it, best_val, best_ep, latest=False, best=False, children=None):
os.makedirs("{0}/checkpoint".format(opt.output_path), exist_ok=True)
if isinstance(model.graph, torch.nn.DataParallel) or isinstance(model.graph, torch.nn.parallel.DistributedDataParallel):
graph = model.graph.module
else:
graph = model.graph
if children is not None:
graph_state_dict = { k: v for k, v in graph.state_dict().items() if k.startswith(children) }
else: graph_state_dict = graph.state_dict()
checkpoint = dict(
epoch=ep,
iter=it,
best_val=best_val,
best_ep=best_ep,
graph=graph_state_dict,
)
for key in model.__dict__:
if key.split("_")[0] in ["optim", "sched", "scaler"]:
checkpoint.update({key: getattr(model, key).state_dict()})
torch.save(checkpoint, "{0}/latest.ckpt".format(opt.output_path))
if best:
shutil.copy("{0}/latest.ckpt".format(opt.output_path),
"{0}/best.ckpt".format(opt.output_path))
if not latest:
shutil.copy("{0}/latest.ckpt".format(opt.output_path),
"{0}/checkpoint/ep{1}.ckpt".format(opt.output_path, ep))
def check_socket_open(hostname, port):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
is_open = False
try:
s.bind((hostname, port))
except socket.error:
is_open = True
finally:
s.close()
return is_open
def get_layer_dims(layers):
# return a list of tuples (k_in, k_out)
return list(zip(layers[:-1], layers[1:]))
@contextlib.contextmanager
def suppress(stdout=False, stderr=False):
with open(os.devnull, "w") as devnull:
if stdout: old_stdout, sys.stdout = sys.stdout, devnull
if stderr: old_stderr, sys.stderr = sys.stderr, devnull
try: yield
finally:
if stdout: sys.stdout = old_stdout
if stderr: sys.stderr = old_stderr
def toggle_grad(model, requires_grad):
for p in model.parameters():
p.requires_grad_(requires_grad)
def compute_grad2(d_outs, x_in):
d_outs = [d_outs] if not isinstance(d_outs, list) else d_outs
reg = 0
for d_out in d_outs:
batch_size = x_in.size(0)
grad_dout = torch.autograd.grad(
outputs=d_out.sum(), inputs=x_in,
create_graph=True, retain_graph=True, only_inputs=True
)[0]
grad_dout2 = grad_dout.pow(2)
assert(grad_dout2.size() == x_in.size())
reg += grad_dout2.view(batch_size, -1).sum(1)
return reg / len(d_outs)
# import matplotlib.pyplot as plt
def interpolate_depth(depth_input, mask_input, size, bg_depth=20):
assert len(depth_input.shape) == len(mask_input.shape) == 4
mask = (mask_input > 0.5).float()
depth_valid = depth_input * mask
depth_valid = torch_F.interpolate(depth_valid, size, mode='bilinear', align_corners=False)
mask = torch_F.interpolate(mask, size, mode='bilinear', align_corners=False)
depth_out = depth_valid / (mask + 1.e-6)
mask_binary = (mask > 0.5).float()
depth_out = depth_out * mask_binary + bg_depth * (1 - mask_binary)
return depth_out, mask_binary
# import matplotlib.pyplot as plt
# import torchvision
def interpolate_coordmap(coord_map, mask_input, size, bg_coord=0):
assert len(coord_map.shape) == len(mask_input.shape) == 4
mask = (mask_input > 0.5).float()
coord_valid = coord_map * mask
coord_valid = torch_F.interpolate(coord_valid, size, mode='bilinear', align_corners=False)
mask = torch_F.interpolate(mask, size, mode='bilinear', align_corners=False)
coord_out = coord_valid / (mask + 1.e-6)
mask_binary = (mask > 0.5).float()
coord_out = coord_out * mask_binary + bg_coord * (1 - mask_binary)
return coord_out, mask_binary
def cleanup():
dist.destroy_process_group()
def is_port_in_use(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0
def setup(rank, world_size, port_no):
full_address = 'tcp://127.0.0.1:' + str(port_no)
dist.init_process_group("nccl", init_method=full_address, rank=rank, world_size=world_size)
def print_grad(grad, prefix=''):
print("{} --- Grad Abs Mean, Grad Max, Grad Min: {:.5f} | {:.5f} | {:.5f}".format(prefix, grad.abs().mean().item(), grad.max().item(), grad.min().item()))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class EasyDict(dict):
def __init__(self, d=None, **kwargs):
if d is None:
d = {}
else:
d = dict(d)
if kwargs:
d.update(**kwargs)
for k, v in d.items():
setattr(self, k, v)
# Class attributes
for k in self.__class__.__dict__.keys():
if not (k.startswith('__') and k.endswith('__')) and not k in ('update', 'pop'):
setattr(self, k, getattr(self, k))
def __setattr__(self, name, value):
if isinstance(value, (list, tuple)):
value = [self.__class__(x)
if isinstance(x, dict) else x for x in value]
elif isinstance(value, dict) and not isinstance(value, self.__class__):
value = self.__class__(value)
super(EasyDict, self).__setattr__(name, value)
super(EasyDict, self).__setitem__(name, value)
__setitem__ = __setattr__
def update(self, e=None, **f):
d = e or dict()
d.update(f)
for k in d:
setattr(self, k, d[k])
def pop(self, k, d=None):
delattr(self, k)
return super(EasyDict, self).pop(k, d)
|