import streamlit as st import langchain from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone st.sidebar.markdown(" # Welcome to Ztudy ") # ------------------------ PDF ------------------------ # Hard-coded PDFs (TODO: make this dynamic from Google Drive) pdf_dict = {} pdf_dict["Field Guide to Data Science"] = "https://wolfpaulus.com/wp-content/uploads/2017/05/field-guide-to-data-science.pdf" pdf_dict["2023 GPT-4 Technical Report"] = "https://cdn.openai.com/papers/gpt-4.pdf" pdf_dict["Administering Data Centers"] = "https://drive.google.com/file/d/1r3bqHq-ZszXnX6UJLOaeoEEa1plUYXZu" pdf_dict["First Aid Reference Guide (Google)"] = "https://drive.google.com/file/d/1fzN2wa_uJ8INUYim88eCymSvJdyDT2fz/" pdf_dict["First Aid Reference Guide (Public)"] = "https://www.sja.ca/sites/default/files/2021-05/First%20aid%20reference%20guide_V4.1_Public.pdf" pdf_dict["Astronomy 2106"] = "https://drive.google.com/file/d/1XXmjMLENP90-eXEqOaTxQ8O56ZwExsVT" pdf_dict["Astronomy 2106 (New)"] = "https://drive.google.com/file/d/1w1S-TY2PzeJ9mjPVb1yLwcYh5EI44oP7" pdf_dict["Learning Deep Learning: Chapter 1"] = "https://drive.google.com/file/d/1o7feaKFzXd5-95GffZyynAwY_fzGafhr/view?usp=sharing" # -------------------- Globals ------------------------ texts = None pinecone_index = "group-1" if 'exchanges' not in st.session_state: st.session_state.exchanges = [] if 'temperature' not in st.session_state: st.session_state.temperature = 0.5 # -------------------- Functions ----------------------- def console_log(msg): st.sidebar.write(msg) def init_pinecone(): pinecone.init( api_key=st.secrets["PINECONE_API_KEY"], # find at app.pinecone.io environment=st.secrets["PINECONE_API_ENV"] # next to api key in console ) return def load_vector_database(): embeddings = OpenAIEmbeddings(openai_api_key=st.secrets["OPENAI_API_KEY"]) init_pinecone() print(f"Number of vectors: {len(texts)} to be upserted to Index: {pinecone_index}") Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=pinecone_index) def load_pdf(url): console_log(f"Loading {url}") loader = OnlinePDFLoader(url) data = loader.load() console_log(f'You have {len(data)} document(s) in your data') console_log(f'There are {len(data[0].page_content)} characters in your document') text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) global texts texts = text_splitter.split_documents(data) console_log(f'After splitting, you have {len(texts)} documents') load_vector_database() def chat(query, temperature): from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain llm = OpenAI(temperature=temperature, openai_api_key=st.secrets["OPENAI_API_KEY"]) chain = load_qa_chain(llm, chain_type="stuff") embeddings = OpenAIEmbeddings(openai_api_key=st.secrets["OPENAI_API_KEY"]) init_pinecone() vector_store = Pinecone.from_existing_index(pinecone_index, embeddings) docs = vector_store.similarity_search(query, include_metadata=True) # Comment/Uncomment to hide/show trace of documents with st.expander("See documents for embedding"): for i in range(len(docs)): st.write(docs[i]) return chain.run(input_documents=docs, question=query) def format_exchanges(exchanges): for i in range(len(exchanges)): if exchanges[i]["role"] == "user": icon, text, blank = st.columns([1,8,1]) elif exchanges[i]["role"] == "assistant": blank, text, icon = st.columns([1,8,1]) else: st.markdown("*" + exchanges[i]["role"] + ":* " + exchanges[i]["content"]) continue with icon: st.image("icon_" + exchanges[i]["role"] + ".png", width=50) with text: st.markdown(exchanges[i]["content"]) st.markdown("""---""") def format_prompt(exchanges): # Include the last 6 exchanges prompt = "" for i in range( max(len(exchanges)-7,0), len(exchanges)): prompt += "[Q]" if (exchanges[i]["role"] == "user") else "[A]" prompt += ": " + exchanges[i]["content"] + "\n" with st.expander("See prompt sent to LLM"): st.write(prompt) return prompt # ------------------------ Load PDF ------------------------ with st.sidebar: option = st.selectbox("Select a PDF", list(pdf_dict.keys()), key="pdf", on_change=None) st.markdown(f"*Selected*: {option}") st.button('Click to start loading PDF', key="load_pdf", on_click=load_pdf, args=[pdf_dict[option]]) # ------------------------ Chatbot ------------------------ st.slider("Temperature (0 = Most Deterministic)", min_value=0.0, max_value=1.0, step=0.1, key="temperature") st.text_input("Prompt", placeholder="Ask me anything", key="prompt") if st.session_state.prompt: st.session_state.exchanges.append({"role": "user", "content": st.session_state.prompt}) try: response = chat(format_prompt(st.session_state.exchanges), st.session_state.temperature) except Exception as e: st.error(e) st.stop() st.session_state.exchanges.append({"role": "assistant", "content": response}) format_exchanges(st.session_state.exchanges)