|
|
|
|
|
|
|
|
|
|
|
"""A simple web interactive chat demo based on gradio.""" |
|
|
|
from argparse import ArgumentParser |
|
from pathlib import Path |
|
|
|
import copy |
|
import gradio as gr |
|
import os |
|
import re |
|
import secrets |
|
import tempfile |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.generation import GenerationConfig |
|
|
|
DEFAULT_CKPT_PATH = 'Qwen/Qwen-VL-Chat' |
|
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>" |
|
|
|
|
|
def _get_args(): |
|
parser = ArgumentParser() |
|
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH, |
|
help="Checkpoint name or path, default to %(default)r") |
|
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only") |
|
|
|
parser.add_argument("--share", action="store_true", default=False, |
|
help="Create a publicly shareable link for the interface.") |
|
parser.add_argument("--inbrowser", action="store_true", default=False, |
|
help="Automatically launch the interface in a new tab on the default browser.") |
|
parser.add_argument("--server-port", type=int, default=8000, |
|
help="Demo server port.") |
|
parser.add_argument("--server-name", type=str, default="127.0.0.1", |
|
help="Demo server name.") |
|
|
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def _load_model_tokenizer(args): |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.checkpoint_path, trust_remote_code=True, resume_download=True, |
|
) |
|
|
|
if args.cpu_only: |
|
device_map = "cpu" |
|
else: |
|
|
|
device_map = "cpu" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint_path, |
|
device_map=device_map, |
|
trust_remote_code=True, |
|
resume_download=True, |
|
).eval() |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
args.checkpoint_path, trust_remote_code=True, resume_download=True, |
|
) |
|
|
|
return model, tokenizer |
|
|
|
|
|
def _parse_text(text): |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split("`") |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = f"<br></code></pre>" |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", r"\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>" + line |
|
text = "".join(lines) |
|
return text |
|
|
|
|
|
def _launch_demo(args, model, tokenizer): |
|
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str( |
|
Path(tempfile.gettempdir()) / "gradio" |
|
) |
|
|
|
def predict(_chatbot, task_history): |
|
query = task_history[-1][0] |
|
print("User: " + _parse_text(query)) |
|
history_cp = copy.deepcopy(task_history) |
|
full_response = "" |
|
|
|
history_filter = [] |
|
pic_idx = 1 |
|
pre = "" |
|
for i, (q, a) in enumerate(history_cp): |
|
if isinstance(q, (tuple, list)): |
|
q = f'Picture {pic_idx}: <img>{q[0]}</img>' |
|
pre += q + '\n' |
|
pic_idx += 1 |
|
else: |
|
pre += q |
|
history_filter.append((pre, a)) |
|
pre = "" |
|
history, message = history_filter[:-1], history_filter[-1][0] |
|
response, history = model.chat(tokenizer, message, history=history) |
|
image = tokenizer.draw_bbox_on_latest_picture(response, history) |
|
if image is not None: |
|
temp_dir = secrets.token_hex(20) |
|
temp_dir = Path(uploaded_file_dir) / temp_dir |
|
temp_dir.mkdir(exist_ok=True, parents=True) |
|
name = f"tmp{secrets.token_hex(5)}.jpg" |
|
filename = temp_dir / name |
|
image.save(str(filename)) |
|
_chatbot[-1] = (_parse_text(query), (str(filename),)) |
|
chat_response = response.replace("<ref>", "") |
|
chat_response = chat_response.replace(r"</ref>", "") |
|
chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response) |
|
if chat_response != "": |
|
_chatbot.append((None, chat_response)) |
|
else: |
|
_chatbot[-1] = (_parse_text(query), response) |
|
full_response = _parse_text(response) |
|
|
|
task_history[-1] = (query, full_response) |
|
print("Qwen-VL-Chat: " + _parse_text(full_response)) |
|
return _chatbot |
|
|
|
def regenerate(_chatbot, task_history): |
|
if not task_history: |
|
return _chatbot |
|
item = task_history[-1] |
|
if item[1] is None: |
|
return _chatbot |
|
task_history[-1] = (item[0], None) |
|
chatbot_item = _chatbot.pop(-1) |
|
if chatbot_item[0] is None: |
|
_chatbot[-1] = (_chatbot[-1][0], None) |
|
else: |
|
_chatbot.append((chatbot_item[0], None)) |
|
return predict(_chatbot, task_history) |
|
|
|
def add_text(history, task_history, text): |
|
history = history + [(_parse_text(text), None)] |
|
task_history = task_history + [(text, None)] |
|
return history, task_history, "" |
|
|
|
def add_file(history, task_history, file): |
|
history = history + [((file.name,), None)] |
|
task_history = task_history + [((file.name,), None)] |
|
return history, task_history |
|
|
|
def reset_user_input(): |
|
return gr.update(value="") |
|
|
|
def reset_state(task_history): |
|
task_history.clear() |
|
return [] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("""\ |
|
<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-7B-Chat/repo? |
|
Revision=master&FilePath=assets/logo.jpeg&View=true" style="height: 80px"/><p>""") |
|
gr.Markdown("""<center><font size=8>Qwen-VL-Chat Bot</center>""") |
|
gr.Markdown( |
|
"""\ |
|
<center><font size=3>This WebUI is based on Qwen-VL-Chat, developed by Alibaba Cloud. \ |
|
(本WebUI基于Qwen-VL-Chat打造,实现聊天机器人功能。)</center>""") |
|
gr.Markdown("""\ |
|
<center><font size=4>Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 </a> |
|
| <a href="https://huggingface.co./Qwen/Qwen-VL">🤗</a>  | |
|
Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 </a> | |
|
<a href="https://huggingface.co./Qwen/Qwen-VL-Chat">🤗</a>  | |
|
 <a href="https://github.com/QwenLM/Qwen-VL">Github</a></center>""") |
|
|
|
chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=750) |
|
query = gr.Textbox(lines=2, label='Input') |
|
task_history = gr.State([]) |
|
|
|
with gr.Row(): |
|
empty_bin = gr.Button("🧹 Clear History (清除历史)") |
|
submit_btn = gr.Button("🚀 Submit (发送)") |
|
regen_btn = gr.Button("🤔️ Regenerate (重试)") |
|
addfile_btn = gr.UploadButton("📁 Upload (上传文件)", file_types=["image"]) |
|
|
|
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then( |
|
predict, [chatbot, task_history], [chatbot], show_progress=True |
|
) |
|
submit_btn.click(reset_user_input, [], [query]) |
|
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True) |
|
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True) |
|
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True) |
|
|
|
gr.Markdown("""\ |
|
<font size=2>Note: This demo is governed by the original license of Qwen-VL. \ |
|
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \ |
|
including hate speech, violence, pornography, deception, etc. \ |
|
(注:本演示受Qwen-VL的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\ |
|
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""") |
|
|
|
demo.queue().launch( |
|
share=args.share, |
|
inbrowser=args.inbrowser, |
|
server_port=args.server_port, |
|
server_name=args.server_name, |
|
) |
|
|
|
|
|
def main(): |
|
args = _get_args() |
|
|
|
model, tokenizer = _load_model_tokenizer(args) |
|
|
|
_launch_demo(args, model, tokenizer) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|