|
import argparse |
|
import itertools |
|
import json |
|
import os |
|
import random |
|
import time |
|
from functools import partial |
|
|
|
import torch |
|
from pycocoevalcap.eval import COCOEvalCap |
|
from pycocotools.coco import COCO |
|
from tqdm import tqdm |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
ds_collections = { |
|
'flickr': { |
|
'train': 'data/flickr30k/flickr30k_karpathy_test.json', |
|
'test': 'data/flickr30k/flickr30k_karpathy_test.json', |
|
}, |
|
'nocaps': { |
|
'train': '', |
|
'test': 'data/nocaps/nocaps_val.json', |
|
}, |
|
} |
|
|
|
|
|
class CaptionDataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, train, test, prompt, few_shot=0): |
|
self.images = json.load(open(test))['images'] |
|
self.prompt = prompt |
|
|
|
self.few_shot = few_shot |
|
if few_shot > 0: |
|
self.train = json.load(open(train))['annotations'] |
|
|
|
def __len__(self): |
|
return len(self.images) |
|
|
|
def __getitem__(self, idx): |
|
image_id, image_path = self.images[idx]['id'], self.images[idx][ |
|
'image'] |
|
|
|
few_shot_prompt = '' |
|
if self.few_shot > 0: |
|
few_shot_samples = random.sample(self.train, self.few_shot) |
|
for sample in few_shot_samples: |
|
few_shot_prompt += self.prompt.format( |
|
sample['image']) + f" {sample['caption']}" |
|
|
|
return { |
|
'image_id': image_id, |
|
'input_text': few_shot_prompt + self.prompt.format(image_path) |
|
} |
|
|
|
|
|
def collate_fn(inputs, tokenizer): |
|
|
|
image_ids = [_['image_id'] for _ in inputs] |
|
input_texts = [_['input_text'] for _ in inputs] |
|
input_tokens = tokenizer(input_texts, |
|
return_tensors='pt', |
|
padding='longest') |
|
|
|
return image_ids, input_tokens.input_ids, input_tokens.attention_mask |
|
|
|
|
|
class InferenceSampler(torch.utils.data.sampler.Sampler): |
|
|
|
def __init__(self, size): |
|
self._size = int(size) |
|
assert size > 0 |
|
self._rank = torch.distributed.get_rank() |
|
self._world_size = torch.distributed.get_world_size() |
|
self._local_indices = self._get_local_indices(size, self._world_size, |
|
self._rank) |
|
|
|
@staticmethod |
|
def _get_local_indices(total_size, world_size, rank): |
|
shard_size = total_size // world_size |
|
left = total_size % world_size |
|
shard_sizes = [shard_size + int(r < left) for r in range(world_size)] |
|
|
|
begin = sum(shard_sizes[:rank]) |
|
end = min(sum(shard_sizes[:rank + 1]), total_size) |
|
return range(begin, end) |
|
|
|
def __iter__(self): |
|
yield from self._local_indices |
|
|
|
def __len__(self): |
|
return len(self._local_indices) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--checkpoint', type=str, default='') |
|
parser.add_argument('--dataset', type=str, default='') |
|
parser.add_argument('--batch-size', type=int, default=1) |
|
parser.add_argument('--num-workers', type=int, default=1) |
|
parser.add_argument('--few-shot', type=int, default=0) |
|
parser.add_argument('--seed', type=int, default=0) |
|
args = parser.parse_args() |
|
|
|
torch.distributed.init_process_group( |
|
backend='nccl', |
|
world_size=int(os.getenv('WORLD_SIZE', '1')), |
|
rank=int(os.getenv('RANK', '0')), |
|
) |
|
|
|
torch.cuda.set_device(torch.distributed.get_rank()) |
|
|
|
prompt = '<img>{}</img>Describe the image in English:' |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.checkpoint, device_map='cuda', trust_remote_code=True).eval() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint, |
|
trust_remote_code=True) |
|
|
|
random.seed(args.seed) |
|
dataset = CaptionDataset( |
|
train=ds_collections[args.dataset]['train'], |
|
test=ds_collections[args.dataset]['test'], |
|
tokenizer=tokenizer, |
|
prompt=prompt, |
|
few_shot=args.few_shot, |
|
) |
|
coco_karpathy_test_loader = torch.utils.data.DataLoader( |
|
dataset=dataset, |
|
sampler=InferenceSampler(len(dataset)), |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=False, |
|
collate_fn=partial(collate_fn, tokenizer=tokenizer), |
|
) |
|
|
|
image_ids = [] |
|
captions = [] |
|
for _, (ids, input_ids, |
|
attention_mask) in tqdm(enumerate(coco_karpathy_test_loader)): |
|
pred = model.generate( |
|
input_ids=input_ids.cuda(), |
|
attention_mask=attention_mask.cuda(), |
|
do_sample=False, |
|
num_beams=1, |
|
max_new_tokens=30, |
|
min_new_tokens=8, |
|
length_penalty=0, |
|
num_return_sequences=1, |
|
use_cache=True, |
|
pad_token_id=tokenizer.eod_id, |
|
eos_token_id=tokenizer.eod_id, |
|
) |
|
image_ids.extend(ids) |
|
captions.extend([ |
|
tokenizer.decode(_[input_ids.size(1):].cpu(), |
|
skip_special_tokens=True).strip() for _ in pred |
|
]) |
|
|
|
torch.distributed.barrier() |
|
|
|
world_size = torch.distributed.get_world_size() |
|
merged_ids = [None for _ in range(world_size)] |
|
merged_captions = [None for _ in range(world_size)] |
|
torch.distributed.all_gather_object(merged_ids, image_ids) |
|
torch.distributed.all_gather_object(merged_captions, captions) |
|
|
|
merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)] |
|
merged_captions = [ |
|
_ for _ in itertools.chain.from_iterable(merged_captions) |
|
] |
|
|
|
if torch.distributed.get_rank() == 0: |
|
results = [] |
|
for image_id, caption in zip(merged_ids, merged_captions): |
|
results.append({ |
|
'image_id': int(image_id), |
|
'caption': caption, |
|
}) |
|
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime()) |
|
results_file = f'{args.dataset}_{time_prefix}.json' |
|
json.dump(results, open(results_file, 'w')) |
|
|
|
coco = COCO(ds_collections[args.dataset]['test']) |
|
coco_result = coco.loadRes(results_file) |
|
coco_eval = COCOEvalCap(coco, coco_result) |
|
coco_eval.evaluate() |
|
|
|
print(coco_eval.eval.items()) |
|
torch.distributed.barrier() |
|
|