Qwen-VL / eval_mm /evaluate_caption.py
znskiss's picture
Upload folder using huggingface_hub
319f7e3
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import torch
from pycocoevalcap.eval import COCOEvalCap
from pycocotools.coco import COCO
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
ds_collections = {
'flickr': {
'train': 'data/flickr30k/flickr30k_karpathy_test.json',
'test': 'data/flickr30k/flickr30k_karpathy_test.json',
},
'nocaps': {
'train': '',
'test': 'data/nocaps/nocaps_val.json',
},
}
class CaptionDataset(torch.utils.data.Dataset):
def __init__(self, train, test, prompt, few_shot=0):
self.images = json.load(open(test))['images']
self.prompt = prompt
self.few_shot = few_shot
if few_shot > 0:
self.train = json.load(open(train))['annotations']
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image_id, image_path = self.images[idx]['id'], self.images[idx][
'image']
few_shot_prompt = ''
if self.few_shot > 0:
few_shot_samples = random.sample(self.train, self.few_shot)
for sample in few_shot_samples:
few_shot_prompt += self.prompt.format(
sample['image']) + f" {sample['caption']}"
return {
'image_id': image_id,
'input_text': few_shot_prompt + self.prompt.format(image_path)
}
def collate_fn(inputs, tokenizer):
image_ids = [_['image_id'] for _ in inputs]
input_texts = [_['input_text'] for _ in inputs]
input_tokens = tokenizer(input_texts,
return_tensors='pt',
padding='longest')
return image_ids, input_tokens.input_ids, input_tokens.attention_mask
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--few-shot', type=int, default=0)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(torch.distributed.get_rank())
prompt = '<img>{}</img>Describe the image in English:'
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint, device_map='cuda', trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint,
trust_remote_code=True)
random.seed(args.seed)
dataset = CaptionDataset(
train=ds_collections[args.dataset]['train'],
test=ds_collections[args.dataset]['test'],
tokenizer=tokenizer,
prompt=prompt,
few_shot=args.few_shot,
)
coco_karpathy_test_loader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, tokenizer=tokenizer),
)
image_ids = []
captions = []
for _, (ids, input_ids,
attention_mask) in tqdm(enumerate(coco_karpathy_test_loader)):
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=30,
min_new_tokens=8,
length_penalty=0,
num_return_sequences=1,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
image_ids.extend(ids)
captions.extend([
tokenizer.decode(_[input_ids.size(1):].cpu(),
skip_special_tokens=True).strip() for _ in pred
])
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_ids = [None for _ in range(world_size)]
merged_captions = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_ids, image_ids)
torch.distributed.all_gather_object(merged_captions, captions)
merged_ids = [_ for _ in itertools.chain.from_iterable(merged_ids)]
merged_captions = [
_ for _ in itertools.chain.from_iterable(merged_captions)
]
if torch.distributed.get_rank() == 0:
results = []
for image_id, caption in zip(merged_ids, merged_captions):
results.append({
'image_id': int(image_id),
'caption': caption,
})
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{args.dataset}_{time_prefix}.json'
json.dump(results, open(results_file, 'w'))
coco = COCO(ds_collections[args.dataset]['test'])
coco_result = coco.loadRes(results_file)
coco_eval = COCOEvalCap(coco, coco_result)
coco_eval.evaluate()
print(coco_eval.eval.items())
torch.distributed.barrier()