|
import streamlit as st |
|
import os |
|
import json |
|
import fitz |
|
import re |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSequenceClassification, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
import torch |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import numpy as np |
|
import nltk |
|
from nltk.tokenize import sent_tokenize |
|
from nltk.corpus import stopwords |
|
|
|
def is_new_file_upload(uploaded_file): |
|
if 'last_uploaded_file' in st.session_state: |
|
|
|
if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or |
|
uploaded_file.size != st.session_state.last_uploaded_file['size']): |
|
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size} |
|
|
|
return True |
|
else: |
|
|
|
return False |
|
else: |
|
|
|
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size} |
|
return True |
|
def combined_similarity(similarity, sentence, query): |
|
|
|
|
|
|
|
sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words) |
|
query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words) |
|
|
|
|
|
common_words = len(sentence_words.intersection(query_words)) |
|
|
|
|
|
combined_score = similarity + (common_words / max(len(query_words), 1)) |
|
return combined_score,similarity,(common_words / max(len(query_words), 1)) |
|
|
|
def contradiction_detection(premise,hypothesis): |
|
inputs = st.session_state.roberta_tokenizer.encode_plus(premise, hypothesis, return_tensors="pt", truncation=True) |
|
|
|
|
|
outputs = st.session_state.roberta_model(**inputs) |
|
|
|
|
|
logits = outputs.logits |
|
|
|
|
|
probabilities = torch.softmax(logits, dim=1) |
|
|
|
|
|
predicted_class = torch.argmax(probabilities, dim=1).item() |
|
|
|
|
|
labels = ["Contradiction", "Neutral", "Entailment"] |
|
|
|
|
|
print(f"Prediction: {labels[predicted_class]}") |
|
return {labels[predicted_class]} |
|
|
|
|
|
if 'is_initialized' not in st.session_state: |
|
st.session_state['is_initialized'] = True |
|
|
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
|
|
|
|
|
|
stop_words_list = stopwords.words('english') |
|
st.session_state.stop_words = set(stop_words_list) |
|
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", ) |
|
st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda') |
|
st.session_state.roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-large-mnli") |
|
st.session_state.roberta_model = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli") |
|
|
|
if 'list_count' in st.session_state: |
|
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }') |
|
if 'paragraph_sentence_encodings' not in st.session_state: |
|
print("start embedding paragarphs") |
|
read_progress_bar = st.progress(0) |
|
st.session_state.paragraph_sentence_encodings = [] |
|
for index,paragraph in enumerate(st.session_state.restored_paragraphs): |
|
|
|
|
|
progress_percentage = (index) / (st.session_state.list_count - 1) |
|
|
|
read_progress_bar.progress(progress_percentage) |
|
|
|
sentence_encodings = [] |
|
paragraph_without_newline= paragraph['paragraph'].replace("\n", "") |
|
sentences = sent_tokenize(paragraph_without_newline) |
|
for sentence in sentences: |
|
if sentence.strip().endswith('?'): |
|
sentence_encodings.append(None) |
|
continue |
|
if len(sentence.strip()) < 4: |
|
sentence_encodings.append(None) |
|
continue |
|
sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda') |
|
with torch.no_grad(): |
|
sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy() |
|
sentence_encodings.append([sentence, sentence_encoding]) |
|
|
|
st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings]) |
|
st.rerun() |
|
big_text = """ |
|
<div style='text-align: center;'> |
|
<h1 style='font-size: 30x;'>Knowledge Extraction A</h1> |
|
</div> |
|
""" |
|
|
|
st.markdown(big_text, unsafe_allow_html=True) |
|
|
|
uploaded_pdf_file = st.file_uploader("Upload a PDF file", |
|
type=['pdf']) |
|
st.markdown( |
|
f'<a href="https://ikmtechnology.github.io/ikmtechnology/untethered_extracted_paragraphs.json" target="_blank">Sample 1 download and then upload to above</a>', |
|
unsafe_allow_html=True) |
|
st.markdown("sample queries for above file: <br/> What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True) |
|
st.markdown( |
|
f'<a href="https://ikmtechnology.github.io/ikmtechnology/the_business_case_for_ai_extracted_paragraphs.json" target="_blank">Sample 2 download and then upload to above</a>', |
|
unsafe_allow_html=True) |
|
st.markdown("sample queries for above file: <br/> what does nontechnical managers worry about? what if you put all the knowledge, frameworks, and tips from this book to full use? tell me about AI agent",unsafe_allow_html=True) |
|
if uploaded_pdf_file is not None: |
|
if is_new_file_upload(uploaded_pdf_file): |
|
print("is new file uploaded") |
|
if 'prev_query' in st.session_state: |
|
del st.session_state['prev_query'] |
|
if 'paragraph_sentence_encodings' in st.session_state: |
|
del st.session_state['paragraph_sentence_encodings'] |
|
save_path = './uploaded_files' |
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
with open(os.path.join(save_path, uploaded_pdf_file.name), "wb") as f: |
|
f.write(uploaded_pdf_file.getbuffer()) |
|
st.success(f'Saved file temp_{uploaded_pdf_file.name} in {save_path}') |
|
st.session_state.uploaded_path=os.path.join(save_path, uploaded_pdf_file.name) |
|
|
|
|
|
doc = fitz.open(st.session_state.uploaded_path) |
|
sentence_endings = ('.', '!', '?') |
|
start_page = 1 |
|
st.session_state.restored_paragraphs = [] |
|
for page_num in range(start_page - 1, len(doc)): |
|
page = doc.load_page(page_num) |
|
blocks = page.get_text("blocks") |
|
|
|
block_index = 1 |
|
for block in blocks: |
|
x0, y0, x1, y1, text, block_type, flags = block |
|
if text.strip() != "": |
|
text = text.strip() |
|
text = re.sub(r'\n\s+\n', '\n\n', text) |
|
list_pattern = re.compile(r'^\s*((?:\d+\.|[a-zA-Z]\.|[*-])\s+.+)', re.MULTILINE) |
|
match = list_pattern.search(text) |
|
containsList = False |
|
if match: |
|
containsList = True |
|
|
|
paragraph = "" |
|
if bool(re.search(r'\n{2,}', text)): |
|
substrings = re.split(r'\n{2,}', text) |
|
for substring in substrings: |
|
if substring.strip() != "": |
|
paragraph = substring |
|
st.session_state.restored_paragraphs.append( |
|
{"paragraph": paragraph, "containsList": containsList, "page_num": page_num, "text": text}); |
|
|
|
else: |
|
paragraph = text |
|
st.session_state.restored_paragraphs.append( |
|
{"paragraph": paragraph, "containsList": containsList, "page_num": page_num, "text": None}); |
|
if isinstance(st.session_state.restored_paragraphs, list): |
|
|
|
st.session_state.list_count = len(st.session_state.restored_paragraphs) |
|
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count}') |
|
st.rerun() |
|
|
|
if 'paragraph_sentence_encodings' in st.session_state: |
|
query = st.text_input("Enter your query") |
|
|
|
if query: |
|
if 'prev_query' not in st.session_state or st.session_state.prev_query != query: |
|
st.session_state.prev_query = query |
|
st.session_state.premise = query |
|
query_tokens = st.session_state.bert_tokenizer(query, return_tensors="pt", padding=True, truncation=True).to( |
|
'cuda') |
|
with torch.no_grad(): |
|
query_encoding = st.session_state.bert_model(**query_tokens).last_hidden_state[:, 0, |
|
:].cpu().numpy() |
|
|
|
paragraph_scores = [] |
|
sentence_scores = [] |
|
total_count = len(st.session_state.paragraph_sentence_encodings) |
|
processing_progress_bar = st.progress(0) |
|
|
|
for index, paragraph_sentence_encoding in enumerate(st.session_state.paragraph_sentence_encodings): |
|
progress_percentage = index / (total_count - 1) |
|
processing_progress_bar.progress(progress_percentage) |
|
|
|
sentence_similarities = [] |
|
for sentence_encoding in paragraph_sentence_encoding[1]: |
|
if sentence_encoding: |
|
similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0] |
|
combined_score, similarity_score, commonality_score = combined_similarity(similarity, |
|
sentence_encoding[0], |
|
query) |
|
sentence_similarities.append((combined_score, sentence_encoding[0], commonality_score)) |
|
sentence_scores.append((combined_score, sentence_encoding[0])) |
|
|
|
sentence_similarities.sort(reverse=True, key=lambda x: x[0]) |
|
|
|
if len(sentence_similarities) >= 3: |
|
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities[:3]]) |
|
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities[:3]]) |
|
top_three_sentences = sentence_similarities[:3] |
|
elif sentence_similarities: |
|
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities]) |
|
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities]) |
|
top_three_sentences = sentence_similarities |
|
else: |
|
top_three_avg_similarity = 0 |
|
top_three_avg_commonality = 0 |
|
top_three_sentences = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
paragraph_scores.append( |
|
(top_three_avg_similarity, top_three_avg_commonality, |
|
{'top_three_sentences': top_three_sentences, 'original_text': paragraph_sentence_encoding[0]}) |
|
) |
|
|
|
sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True) |
|
st.session_state.paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True) |
|
|
|
if 'paragraph_scores' in st.session_state: |
|
|
|
|
|
st.write("Top scored paragraphs and their scores:") |
|
for i, (similarity_score, commonality_score, paragraph) in enumerate( |
|
st.session_state.paragraph_scores[:5]): |
|
|
|
|
|
for top_sentence in paragraph['top_three_sentences']: |
|
st.write("hyppthesis: ", top_sentence[1]) |
|
st.write(contradiction_detection(st.session_state.premise,top_sentence[1])) |
|
|
|
|
|
|
|
st.write("Original Paragraph: ", paragraph['original_text']) |
|
|
|
|
|
|
|
|