dtcda / app.py
zmbfeng's picture
able to load pdf file
4c2c5b7
raw
history blame
14.5 kB
import streamlit as st
import os
import json
import fitz
import re
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSequenceClassification, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM
import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
def is_new_file_upload(uploaded_file):
if 'last_uploaded_file' in st.session_state:
# Check if the newly uploaded file is different from the last one
if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or
uploaded_file.size != st.session_state.last_uploaded_file['size']):
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
# st.write("A new src image file has been uploaded.")
return True
else:
# st.write("The same src image file has been re-uploaded.")
return False
else:
# st.write("This is the first file upload detected.")
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
return True
def combined_similarity(similarity, sentence, query):
# Tokenize both the sentence and the query
# sentence_words = set(sentence.split())
# query_words = set(query.split())
sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words)
query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words)
# Calculate the number of common words
common_words = len(sentence_words.intersection(query_words))
# Adjust the similarity score with the common words count
combined_score = similarity + (common_words / max(len(query_words), 1)) # Normalize by the length of the query to keep the score between -1 and 1
return combined_score,similarity,(common_words / max(len(query_words), 1))
def contradiction_detection(premise,hypothesis):
inputs = st.session_state.roberta_tokenizer.encode_plus(premise, hypothesis, return_tensors="pt", truncation=True)
# Get model predictions
outputs = st.session_state.roberta_model(**inputs)
# Get the logits (raw predictions before softmax)
logits = outputs.logits
# Apply softmax to get probabilities for each class
probabilities = torch.softmax(logits, dim=1)
# Class labels: 0 = entailment, 1 = neutral, 2 = contradiction
predicted_class = torch.argmax(probabilities, dim=1).item()
# Class labels
labels = ["Contradiction", "Neutral", "Entailment"]
# Output the result
print(f"Prediction: {labels[predicted_class]}")
return {labels[predicted_class]}
if 'is_initialized' not in st.session_state:
st.session_state['is_initialized'] = True
nltk.download('punkt')
nltk.download('stopwords')
# print("stop words start")
# print(stopwords.words('english'))
# print("stop words end")
stop_words_list = stopwords.words('english')
st.session_state.stop_words = set(stop_words_list)
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
st.session_state.roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-large-mnli")
st.session_state.roberta_model = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
if 'list_count' in st.session_state:
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
if 'paragraph_sentence_encodings' not in st.session_state:
print("start embedding paragarphs")
read_progress_bar = st.progress(0)
st.session_state.paragraph_sentence_encodings = []
for index,paragraph in enumerate(st.session_state.restored_paragraphs):
#print(paragraph)
progress_percentage = (index) / (st.session_state.list_count - 1)
# print(progress_percentage)
read_progress_bar.progress(progress_percentage)
sentence_encodings = []
paragraph_without_newline= paragraph['paragraph'].replace("\n", "")
sentences = sent_tokenize(paragraph_without_newline)
for sentence in sentences:
if sentence.strip().endswith('?'):
sentence_encodings.append(None)
continue
if len(sentence.strip()) < 4:
sentence_encodings.append(None)
continue
sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda')
with torch.no_grad():
sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
sentence_encodings.append([sentence, sentence_encoding])
# sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
st.rerun()
big_text = """
<div style='text-align: center;'>
<h1 style='font-size: 30x;'>Knowledge Extraction A</h1>
</div>
"""
# Display the styled text
st.markdown(big_text, unsafe_allow_html=True)
uploaded_pdf_file = st.file_uploader("Upload a PDF file",
type=['pdf'])
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/untethered_extracted_paragraphs.json" target="_blank">Sample 1 download and then upload to above</a>',
unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True)
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/the_business_case_for_ai_extracted_paragraphs.json" target="_blank">Sample 2 download and then upload to above</a>',
unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> what does nontechnical managers worry about? what if you put all the knowledge, frameworks, and tips from this book to full use? tell me about AI agent",unsafe_allow_html=True)
if uploaded_pdf_file is not None:
if is_new_file_upload(uploaded_pdf_file):
print("is new file uploaded")
if 'prev_query' in st.session_state:
del st.session_state['prev_query']
if 'paragraph_sentence_encodings' in st.session_state:
del st.session_state['paragraph_sentence_encodings']
save_path = './uploaded_files'
if not os.path.exists(save_path):
os.makedirs(save_path)
with open(os.path.join(save_path, uploaded_pdf_file.name), "wb") as f:
f.write(uploaded_pdf_file.getbuffer()) # Write the file to the specified location
st.success(f'Saved file temp_{uploaded_pdf_file.name} in {save_path}')
st.session_state.uploaded_path=os.path.join(save_path, uploaded_pdf_file.name)
# st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path)
# print("page_count=",st.session_state.page_count)
doc = fitz.open(st.session_state.uploaded_path)
sentence_endings = ('.', '!', '?')
start_page = 1
st.session_state.restored_paragraphs = []
for page_num in range(start_page - 1, len(doc)): # start_page - 1 to adjust for 0-based index
page = doc.load_page(page_num)
blocks = page.get_text("blocks")
block_index = 1
for block in blocks:
x0, y0, x1, y1, text, block_type, flags = block
if text.strip() != "":
text = text.strip()
text = re.sub(r'\n\s+\n', '\n\n', text)
list_pattern = re.compile(r'^\s*((?:\d+\.|[a-zA-Z]\.|[*-])\s+.+)', re.MULTILINE)
match = list_pattern.search(text)
containsList = False
if match:
containsList = True
# print ("list detected")
paragraph = ""
if bool(re.search(r'\n{2,}', text)):
substrings = re.split(r'\n{2,}', text)
for substring in substrings:
if substring.strip() != "":
paragraph = substring
st.session_state.restored_paragraphs.append(
{"paragraph": paragraph, "containsList": containsList, "page_num": page_num, "text": text});
# print(f"<substring> {substring} </substring>")
else:
paragraph = text
st.session_state.restored_paragraphs.append(
{"paragraph": paragraph, "containsList": containsList, "page_num": page_num, "text": None});
if isinstance(st.session_state.restored_paragraphs, list):
# Count the restored_paragraphs of top-level elements
st.session_state.list_count = len(st.session_state.restored_paragraphs)
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count}')
st.rerun()
if 'paragraph_sentence_encodings' in st.session_state:
query = st.text_input("Enter your query")
if query:
if 'prev_query' not in st.session_state or st.session_state.prev_query != query:
st.session_state.prev_query = query
st.session_state.premise = query
query_tokens = st.session_state.bert_tokenizer(query, return_tensors="pt", padding=True, truncation=True).to(
'cuda')
with torch.no_grad(): # Disable gradient calculation for inference
query_encoding = st.session_state.bert_model(**query_tokens).last_hidden_state[:, 0,
:].cpu().numpy() # Move the result to CPU and convert to NumPy
paragraph_scores = []
sentence_scores = []
total_count = len(st.session_state.paragraph_sentence_encodings)
processing_progress_bar = st.progress(0)
for index, paragraph_sentence_encoding in enumerate(st.session_state.paragraph_sentence_encodings):
progress_percentage = index / (total_count - 1)
processing_progress_bar.progress(progress_percentage)
sentence_similarities = []
for sentence_encoding in paragraph_sentence_encoding[1]:
if sentence_encoding:
similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0]
combined_score, similarity_score, commonality_score = combined_similarity(similarity,
sentence_encoding[0],
query)
sentence_similarities.append((combined_score, sentence_encoding[0], commonality_score))
sentence_scores.append((combined_score, sentence_encoding[0]))
sentence_similarities.sort(reverse=True, key=lambda x: x[0])
# print(sentence_similarities)
if len(sentence_similarities) >= 3:
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities[:3]])
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities[:3]])
top_three_sentences = sentence_similarities[:3]
elif sentence_similarities:
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities])
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities])
top_three_sentences = sentence_similarities
else:
top_three_avg_similarity = 0
top_three_avg_commonality = 0
top_three_sentences = []
# print(f"top_three_sentences={top_three_sentences}")
# top_three_texts = [s[1] for s in top_three_sentences]
# remaining_texts = [s[0] for s in paragraph_sentence_encoding[1] if s and s[0] not in top_three_texts]
# reordered_paragraph = top_three_texts + remaining_texts
#
# original_paragraph = ' '.join([s[0] for s in paragraph_sentence_encoding[1] if s])
# modified_paragraph = ' '.join(reordered_paragraph)
paragraph_scores.append(
(top_three_avg_similarity, top_three_avg_commonality,
{'top_three_sentences': top_three_sentences, 'original_text': paragraph_sentence_encoding[0]})
)
sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True)
st.session_state.paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True)
if 'paragraph_scores' in st.session_state:
st.write("Top scored paragraphs and their scores:")
for i, (similarity_score, commonality_score, paragraph) in enumerate(
st.session_state.paragraph_scores[:5]):
#st.write("top_three_sentences: ", paragraph['top_three_sentences'])
for top_sentence in paragraph['top_three_sentences']:
st.write("hyppthesis: ", top_sentence[1])
st.write(contradiction_detection(st.session_state.premise,top_sentence[1]))
#print(top_sentence[1])
# st.write(f"Similarity Score: {similarity_score}, Commonality Score: {commonality_score}")
# st.write("top_three_sentences: ", paragraph['top_three_sentences'])
st.write("Original Paragraph: ", paragraph['original_text'])
#A Member will be considered Actively at Work if he or she is able and available for active performance of all of his or her regular duties
# st.write("Modified Paragraph: ", paragraph['modified_text'])