import argparse import datetime import os import gradio as gr from signal import SIGINT, signal from utils.log import debug, info, logger, breakPoint as bc import requests from constants import * CHUNK_SIZE = 512 VIDEO_ID = "" OUT_PPT_NAME= PPTX_DEST NO_IMAGES = False QUESTIONS = 5 def init_check(): # check for google-chrome if os.system("google-chrome --version") != 0: logger.critical("Google Chrome is not installed") if os.path.exists("scripts/chrome-setup.sh"): logger.info("Trying to install chrome..") os.system("bash scripts/chrome-setup.sh") if os.system("npm --version") != 0: logger.critical("npm is not installed") if os.system("npx --version") != 0: logger.critical("npx is not installed") if os.system("ffmpeg --version") != 0: logger.critical("ffmpeg is not installed") logger.info("Init check done, look for errors above..") def gradio_run( video_id, chunk_size: int, no_images: bool, no_chapters: bool, out_type="pdf"): # do init check init_check() VIDEO_ID = video_id CHUNK_SIZE = chunk_size NO_IMAGES = no_images NO_CHAPTERS = no_chapters OUT_PPT_NAME = f"{OUTDIR}/gradio-out{VIDEO_ID}.{out_type}" info("Loading modules..") from langchain.chains.summarize import load_summarize_chain # from langchain.vectorstores import Chroma # from langchain.embeddings.huggingface import HuggingFaceEmbeddings # from langchain.chains import RetrievalQA # from langchain.llms import HuggingFacePipeline from langchain.docstore.document import Document from rich.progress import track import utils.markdown as md from models.lamini import lamini as model from utils.marp_wrapper import marp from utils.ppt import generate_ppt from utils.subtitles import subs from utils.video import video from utils.chunk import ChunkByChapters # intialize marp out = marp(MD_DEST) out.add_header(config=MARP_GAIA) # out.add_body("") # initialize video vid = video(VIDEO_ID, f"{OUTDIR}/vid-{VIDEO_ID}") vid.download() # initialize model llm_model = model llm = llm_model.load_model( max_length=400, temperature=0, top_p=0.95, repetition_penalty=1.15 ) # slice subtitle and chunk them # to CHUNK_SIZE based on chapters info(f"Getting subtitles {VIDEO_ID}..") raw_subs = vid.getSubtitles() if raw_subs is None: logger.critical("No subtitles found, exiting..") exit() info(f"got {len(raw_subs)} length subtitles") if NO_CHAPTERS: chunker = subs(VIDEO_ID) chunks = chunker.getSubsList(size=CHUNK_SIZE) model_tmplts = llm_model.templates() summarizer = model_tmplts.summarize title_gen = model_tmplts.generate_title # title Photo first_pic = str(datetime.timedelta(seconds=chunks[0][1])) img_name = f"vid-{VIDEO_ID}_{first_pic}.png" img_path = f"{PNG_DEST}/{img_name}" vid.getframe(first_pic, img_path) out.add_page(md.h1(VIDEO_ID), md.image(url=img_name)) out.marp_end() FCL = len(chunks) # full chunk length CCH = 0 for chunk in track(chunks, description="(processing chunks) Summarizing.."): CCH += 1 logger.info(f"{CCH}/{FCL} - {(CCH/FCL)*100:.2f}% - PROCESSING CHUNKS.") summary = summarizer(chunk[0])[0]["generated_text"].replace("-", "\n-") title = title_gen(chunk[0])[0]["generated_text"] heading = md.h2 if len(title) < 40 else md.h3 out.add_page(heading(title), summary) if not NO_IMAGES and len(summary+title) < 270: timestamp = str(datetime.timedelta(seconds=chunk[1])) imgName = f"vid-{VIDEO_ID}_{timestamp}.png" imgPath = f"{PNG_DEST}/{imgName}" vid.getframe(timestamp, imgPath) out.add_body(md.image(imgName, align="left", setAsBackground=True)) out.marp_end() else: raw_chapters = vid.getChapters(f"{YT_CHAPTER_ENDPOINT}{VIDEO_ID}") chunk_dict = ChunkByChapters(raw_chapters, raw_subs, CHUNK_SIZE) chain = load_summarize_chain(llm, chain_type="stuff") # TODO: ( use refine chain type to summarize all chapters ) img_hook = False for title, subchunks in track(chunk_dict.items(), description="(processing chunks) Summarizing.."): # Typecase subchunks to Document for every topic # get summary for every topic with stuff/refine chain # add to final summary debug(subchunks) docs = [ Document(page_content=t[0]) for t in subchunks[0] ] summary = chain.run(docs) if img_hook == False: ts = str(datetime.timedelta(seconds=subchunks[0][1][0])) img_path = f"{PNG_DEST}/vid-{VIDEO_ID}_{ts}.png" vid.getframe(ts, img_path) if os.path.exists(img_path): # if summary is long ignore images for better page and no clipping if len(summary+title) < 270: out.add_body(md.image( img_path.replace(f"{OUTEXTRA}/", ""), align="left", setAsBackground=True )) out.add_page(md.h2(title), summary) out.marp_end() info(f"Generating {OUT_PPT_NAME}..") out.close_file() generate_ppt(MD_DEST, OUT_PPT_NAME) print(f"Done! {OUT_PPT_NAME}") return os.path.abspath(OUT_PPT_NAME) def gradio_Interface(): init_check() app = gr.Interface( fn=gradio_run, inputs=[ "text", gr.Slider(1, 2000, 1, label="Chunk Size", info="More chunk size = longer text & shorter numbber of slides"), gr.Checkbox(label="No Images", info="Don't keep images in output ( gives more spaces for larger text)"), gr.Checkbox(label="No Chapters", info="Don't use chapter based chunking"), gr.Dropdown(["pptx", "pdf", "html"], label="file format", info="which file format to generte.") ], outputs="file" ) app.launch() if __name__ == "__main__": logger.info("Starting gradio interface..") if not os.path.exists(OUTDIR): os.mkdir(OUTDIR) os.mkdir(OUTEXTRA) if not os.path.exists(OUTEXTRA): os.mkdir(OUTEXTRA) gradio_Interface()