Spaces:
Running
Running
import nltk | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
def t5model(prompt: str) -> str: | |
tokenizer = AutoTokenizer.from_pretrained("fabiochiu/t5-small-medium-title-generation") | |
model = AutoModelForSeq2SeqLM.from_pretrained("fabiochiu/t5-small-medium-title-generation", device_map="cuda:0", torch_dtype=torch.float16) | |
inputs = tokenizer( | |
["summarize:" + prompt], | |
return_tensors="pt", | |
max_length=1024, | |
truncation=True | |
) | |
# Move the inputs tensor to the same device as the model tensor | |
inputs = {k: v.to(model.device) for k, v in inputs.items()} | |
outputs = model.generate( | |
**inputs, | |
num_beams=8, | |
do_sample=True, | |
min_length=8, | |
max_length=15 | |
) | |
decoded_output = tokenizer.batch_decode( | |
outputs, skip_special_tokens=True | |
)[0] | |
return decoded_output | |