|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel |
|
from transformers import GPT2TokenizerFast, GPT2Tokenizer |
|
from easyeditor import apply_grace_to_model, GraceHyperParams,nethook |
|
import torch |
|
import gradio as gr |
|
|
|
|
|
|
|
def edit(prompt, target_new, num_steps, replacement): |
|
request={"prompt":prompt,"target_new":target_new} |
|
hparams = GraceHyperParams.from_hparams("./hparams/GRACE/gpt2.yaml") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("./models/gpt2", device_map='cpu') |
|
tok = GPT2Tokenizer.from_pretrained("./models/gpt2") |
|
tok.pad_token_id = tok.eos_token_id |
|
global edit_model |
|
edit_model = apply_grace_to_model(model,tok,request,hparams, num_steps, replacement) |
|
return prompt |
|
|
|
def generate(input_text, target_new=None): |
|
tok = GPT2Tokenizer.from_pretrained("./models/gpt2") |
|
hparams = GraceHyperParams.from_hparams("./hparams/GRACE/gpt2.yaml") |
|
tok.pad_token_id = tok.eos_token_id |
|
|
|
global edit_model |
|
|
|
if target_new is None: |
|
max_new_tokens = 25 |
|
else: |
|
max_new_tokens = len(tok.encode(target_new)) |
|
prompt_len = len(input_text) |
|
input_ids = tok.encode(input_text, return_tensors='pt').to('cpu') |
|
edit_output = edit_model.generate(input_ids, max_new_tokens=max_new_tokens, pad_token_id=tok.eos_token_id) |
|
edit_reply = tok.decode(edit_output[0], skip_special_tokens=True) |
|
torch.cuda.empty_cache() |
|
|
|
ori_model = AutoModelForCausalLM.from_pretrained("./models/gpt2").to('cpu') |
|
ori_output = ori_model.generate(input_ids, max_new_tokens=max_new_tokens, pad_token_id=tok.eos_token_id) |
|
ori_reply = tok.decode(ori_output[0], skip_special_tokens=True) |
|
ori_reply = [(_, 'output') if i > prompt_len else (_, None) for i, _ in enumerate(ori_reply)] |
|
edit_reply = [(_, 'output') if i > prompt_len else (_, None) for i, _ in enumerate(edit_reply)] |
|
return ori_reply, edit_reply |
|
|