Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import Conv1d, ConvTranspose1d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from modules.neural_source_filter import * | |
from modules.vocoder_blocks import * | |
LRELU_SLOPE = 0.1 | |
class ResBlock1(nn.Module): | |
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.cfg = cfg | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(nn.Module): | |
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock1, self).__init__() | |
self.cfg = cfg | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
] | |
) | |
self.convs.apply(init_weights) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
# This NSF Module is adopted from Xin Wang's NSF under the MIT License | |
# https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts | |
class SourceModuleHnNSF(nn.Module): | |
def __init__( | |
self, fs, harmonic_num=0, amp=0.1, noise_std=0.003, voiced_threshold=0 | |
): | |
super(SourceModuleHnNSF, self).__init__() | |
self.amp = amp | |
self.noise_std = noise_std | |
self.l_sin_gen = SineGen(fs, harmonic_num, amp, noise_std, voiced_threshold) | |
self.l_linear = nn.Linear(harmonic_num + 1, 1) | |
self.l_tanh = nn.Tanh() | |
def forward(self, x, upp): | |
sine_wavs, uv, _ = self.l_sin_gen(x, upp) | |
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
return sine_merge | |
class NSFHiFiGAN(nn.Module): | |
def __init__(self, cfg): | |
super(NSFHiFiGAN, self).__init__() | |
self.cfg = cfg | |
self.num_kernels = len(self.cfg.model.nsfhifigan.resblock_kernel_sizes) | |
self.num_upsamples = len(self.cfg.model.nsfhifigan.upsample_rates) | |
self.m_source = SourceModuleHnNSF( | |
fs=self.cfg.preprocess.sample_rate, | |
harmonic_num=self.cfg.model.nsfhifigan.harmonic_num, | |
) | |
self.noise_convs = nn.ModuleList() | |
self.conv_pre = weight_norm( | |
Conv1d( | |
self.cfg.preprocess.n_mel, | |
self.cfg.model.nsfhifigan.upsample_initial_channel, | |
7, | |
1, | |
padding=3, | |
) | |
) | |
resblock = ResBlock1 if self.cfg.model.nsfhifigan.resblock == "1" else ResBlock2 | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate( | |
zip( | |
self.cfg.model.nsfhifigan.upsample_rates, | |
self.cfg.model.nsfhifigan.upsample_kernel_sizes, | |
) | |
): | |
c_cur = self.cfg.model.nsfhifigan.upsample_initial_channel // (2 ** (i + 1)) | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
self.cfg.model.nsfhifigan.upsample_initial_channel // (2**i), | |
self.cfg.model.nsfhifigan.upsample_initial_channel | |
// (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
if i + 1 < len(self.cfg.model.nsfhifigan.upsample_rates): | |
stride_f0 = int( | |
np.prod(self.cfg.model.nsfhifigan.upsample_rates[i + 1 :]) | |
) | |
self.noise_convs.append( | |
Conv1d( | |
1, | |
c_cur, | |
kernel_size=stride_f0 * 2, | |
stride=stride_f0, | |
padding=stride_f0 // 2, | |
) | |
) | |
else: | |
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) | |
self.resblocks = nn.ModuleList() | |
ch = self.cfg.model.nsfhifigan.upsample_initial_channel | |
for i in range(len(self.ups)): | |
ch //= 2 | |
for j, (k, d) in enumerate( | |
zip( | |
self.cfg.model.nsfhifigan.resblock_kernel_sizes, | |
self.cfg.model.nsfhifigan.resblock_dilation_sizes, | |
) | |
): | |
self.resblocks.append(resblock(cfg, ch, k, d)) | |
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
self.upp = int(np.prod(self.cfg.model.nsfhifigan.upsample_rates)) | |
def forward(self, x, f0): | |
har_source = self.m_source(f0, self.upp).transpose(1, 2) | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
x = self.ups[i](x) | |
x_source = self.noise_convs[i](har_source) | |
length = min(x.shape[-1], x_source.shape[-1]) | |
x = x[:, :, :length] | |
x_source = x[:, :, :length] | |
x = x + x_source | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |