Spaces:
Runtime error
Runtime error
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv2d, Conv1d | |
from torch.nn.utils import weight_norm, spectral_norm | |
from torch import nn | |
from modules.vocoder_blocks import * | |
from models.vocoders.gan.discriminator.msd import MultiScaleDiscriminator_JETS | |
LRELU_SLOPE = 0.1 | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, cfg, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
self.d_mult = cfg.model.mpd.discriminator_channel_mult_factor | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
int(32 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(32 * self.d_mult), | |
int(128 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(128 * self.d_mult), | |
int(512 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(512 * self.d_mult), | |
int(1024 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(5, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
int(1024 * self.d_mult), | |
int(1024 * self.d_mult), | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(2, 0), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f( | |
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)) | |
) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, cfg): | |
super(MultiPeriodDiscriminator, self).__init__() | |
self.mpd_reshapes = cfg.model.mpd.mpd_reshapes | |
print("mpd_reshapes: {}".format(self.mpd_reshapes)) | |
discriminators = [ | |
DiscriminatorP(cfg, rs, use_spectral_norm=cfg.model.mpd.use_spectral_norm) | |
for rs in self.mpd_reshapes | |
] | |
self.discriminators = nn.ModuleList(discriminators) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
# TODO: merge with DiscriminatorP (lmxue, yicheng) | |
class DiscriminatorP_vits(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP_vits, self).__init__() | |
self.period = period | |
self.use_spectral_norm = use_spectral_norm | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
32, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
32, | |
128, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
128, | |
512, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
512, | |
1024, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
1024, | |
1024, | |
(kernel_size, 1), | |
1, | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f(Conv1d(1, 16, 15, 1, padding=7)), | |
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
] | |
) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
# TODO: merge with MultiPeriodDiscriminator (lmxue, yicheng) | |
class MultiPeriodDiscriminator_vits(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator_vits, self).__init__() | |
periods = [2, 3, 5, 7, 11] | |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
discs = discs + [ | |
DiscriminatorP_vits(i, use_spectral_norm=use_spectral_norm) for i in periods | |
] | |
self.discriminators = nn.ModuleList(discs) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
outputs = { | |
"y_d_hat_r": y_d_rs, | |
"y_d_hat_g": y_d_gs, | |
"fmap_rs": fmap_rs, | |
"fmap_gs": fmap_gs, | |
} | |
return outputs | |
class DiscriminatorP_JETS(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP_JETS, self).__init__() | |
self.period = period | |
self.use_spectral_norm = use_spectral_norm | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
32, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
32, | |
128, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
128, | |
512, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
512, | |
1024, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
1024, | |
1024, | |
(kernel_size, 1), | |
1, | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
x = torch.flatten(x, 1, -1) | |
fmap.append(x) | |
return x, fmap | |
class MultiPeriodDiscriminator_JETS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator_JETS, self).__init__() | |
periods = [2, 3, 5, 7, 11] | |
discs = [ | |
DiscriminatorP_JETS(i, use_spectral_norm=use_spectral_norm) for i in periods | |
] | |
self.discriminators = nn.ModuleList(discs) | |
def forward(self, y): | |
y_d_rs = [] | |
fmap_rs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
return y_d_rs, fmap_rs | |
# JETS Multi-scale Multi-period discriminator module. | |
class MultiScaleMultiPeriodDiscriminator(torch.nn.Module): | |
"""HiFi-GAN multi-scale + multi-period discriminator module.""" | |
def __init__(self, use_spectral_norm=False): | |
super(MultiScaleMultiPeriodDiscriminator, self).__init__() | |
self.msd = MultiScaleDiscriminator_JETS() | |
self.mpd = MultiPeriodDiscriminator_JETS() | |
def forward(self, y): | |
_, msd_outs_d_rs = self.msd(y) | |
# msd_outs = self.msd(y, y_hat) | |
_, mpd_outs_d_rs = self.mpd(y) | |
# mpd_outs = self.mpd(y, y_hat) | |
return msd_outs_d_rs + mpd_outs_d_rs | |
# ground_truth, generated | |
# return msd_outs + mpd_outs | |