File size: 5,918 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

from torch import nn
from torch.nn import functional as F

from .modules import Conv1d1x1, ResidualConv1dGLU
from .upsample import ConvInUpsampleNetwork


def receptive_field_size(
    total_layers, num_cycles, kernel_size, dilation=lambda x: 2**x
):
    """Compute receptive field size

    Args:
        total_layers (int): total layers
        num_cycles (int): cycles
        kernel_size (int): kernel size
        dilation (lambda): lambda to compute dilation factor. ``lambda x : 1``
          to disable dilated convolution.

    Returns:
        int: receptive field size in sample

    """
    assert total_layers % num_cycles == 0

    layers_per_cycle = total_layers // num_cycles
    dilations = [dilation(i % layers_per_cycle) for i in range(total_layers)]
    return (kernel_size - 1) * sum(dilations) + 1


class WaveNet(nn.Module):
    """The WaveNet model that supports local and global conditioning.

    Args:
        out_channels (int): Output channels. If input_type is mu-law quantized
          one-hot vecror. this must equal to the quantize channels. Other wise
          num_mixtures x 3 (pi, mu, log_scale).
        layers (int): Number of total layers
        stacks (int): Number of dilation cycles
        residual_channels (int): Residual input / output channels
        gate_channels (int): Gated activation channels.
        skip_out_channels (int): Skip connection channels.
        kernel_size (int): Kernel size of convolution layers.
        dropout (float): Dropout probability.
        input_dim (int): Number of mel-spec dimension.
        upsample_scales (list): List of upsample scale.
          ``np.prod(upsample_scales)`` must equal to hop size. Used only if
          upsample_conditional_features is enabled.
        freq_axis_kernel_size (int): Freq-axis kernel_size for transposed
          convolution layers for upsampling. If you only care about time-axis
          upsampling, set this to 1.
        scalar_input (Bool): If True, scalar input ([-1, 1]) is expected, otherwise
          quantized one-hot vector is expected..
    """

    def __init__(self, cfg):
        super(WaveNet, self).__init__()
        self.cfg = cfg
        self.scalar_input = self.cfg.VOCODER.SCALAR_INPUT
        self.out_channels = self.cfg.VOCODER.OUT_CHANNELS
        self.cin_channels = self.cfg.VOCODER.INPUT_DIM
        self.residual_channels = self.cfg.VOCODER.RESIDUAL_CHANNELS
        self.layers = self.cfg.VOCODER.LAYERS
        self.stacks = self.cfg.VOCODER.STACKS
        self.gate_channels = self.cfg.VOCODER.GATE_CHANNELS
        self.kernel_size = self.cfg.VOCODER.KERNEL_SIZE
        self.skip_out_channels = self.cfg.VOCODER.SKIP_OUT_CHANNELS
        self.dropout = self.cfg.VOCODER.DROPOUT
        self.upsample_scales = self.cfg.VOCODER.UPSAMPLE_SCALES
        self.mel_frame_pad = self.cfg.VOCODER.MEL_FRAME_PAD

        assert self.layers % self.stacks == 0

        layers_per_stack = self.layers // self.stacks
        if self.scalar_input:
            self.first_conv = Conv1d1x1(1, self.residual_channels)
        else:
            self.first_conv = Conv1d1x1(self.out_channels, self.residual_channels)

        self.conv_layers = nn.ModuleList()
        for layer in range(self.layers):
            dilation = 2 ** (layer % layers_per_stack)
            conv = ResidualConv1dGLU(
                self.residual_channels,
                self.gate_channels,
                kernel_size=self.kernel_size,
                skip_out_channels=self.skip_out_channels,
                bias=True,
                dilation=dilation,
                dropout=self.dropout,
                cin_channels=self.cin_channels,
            )
            self.conv_layers.append(conv)

        self.last_conv_layers = nn.ModuleList(
            [
                nn.ReLU(inplace=True),
                Conv1d1x1(self.skip_out_channels, self.skip_out_channels),
                nn.ReLU(inplace=True),
                Conv1d1x1(self.skip_out_channels, self.out_channels),
            ]
        )

        self.upsample_net = ConvInUpsampleNetwork(
            upsample_scales=self.upsample_scales,
            cin_pad=self.mel_frame_pad,
            cin_channels=self.cin_channels,
        )

        self.receptive_field = receptive_field_size(
            self.layers, self.stacks, self.kernel_size
        )

    def forward(self, x, mel, softmax=False):
        """Forward step

        Args:
            x (Tensor): One-hot encoded audio signal, shape (B x C x T)
            mel (Tensor): Local conditioning features,
              shape (B x cin_channels x T)
            softmax (bool): Whether applies softmax or not.

        Returns:
            Tensor: output, shape B x out_channels x T
        """
        B, _, T = x.size()

        mel = self.upsample_net(mel)
        assert mel.shape[-1] == x.shape[-1]

        x = self.first_conv(x)
        skips = 0
        for f in self.conv_layers:
            x, h = f(x, mel)
            skips += h
        skips *= math.sqrt(1.0 / len(self.conv_layers))

        x = skips
        for f in self.last_conv_layers:
            x = f(x)

        x = F.softmax(x, dim=1) if softmax else x

        return x

    def clear_buffer(self):
        self.first_conv.clear_buffer()
        for f in self.conv_layers:
            f.clear_buffer()
        for f in self.last_conv_layers:
            try:
                f.clear_buffer()
            except AttributeError:
                pass

    def make_generation_fast_(self):
        def remove_weight_norm(m):
            try:
                nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(remove_weight_norm)