Spaces:
Runtime error
Runtime error
File size: 8,847 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from models.base.base_trainer import BaseTrainer
from diffusers import DDPMScheduler
from models.tta.ldm.audioldm_dataset import AudioLDMDataset, AudioLDMCollator
from models.tta.autoencoder.autoencoder import AutoencoderKL
from models.tta.ldm.audioldm import AudioLDM, UNetModel
import torch
import torch.nn as nn
from torch.nn import MSELoss, L1Loss
import torch.nn.functional as F
from torch.utils.data import ConcatDataset, DataLoader
from transformers import T5EncoderModel
from diffusers import DDPMScheduler
class AudioLDMTrainer(BaseTrainer):
def __init__(self, args, cfg):
BaseTrainer.__init__(self, args, cfg)
self.cfg = cfg
self.build_autoencoderkl()
self.build_textencoder()
self.nosie_scheduler = self.build_noise_scheduler()
self.save_config_file()
def build_autoencoderkl(self):
self.autoencoderkl = AutoencoderKL(self.cfg.model.autoencoderkl)
self.autoencoder_path = self.cfg.model.autoencoder_path
checkpoint = torch.load(self.autoencoder_path, map_location="cpu")
self.autoencoderkl.load_state_dict(checkpoint["model"])
self.autoencoderkl.cuda(self.args.local_rank)
self.autoencoderkl.requires_grad_(requires_grad=False)
self.autoencoderkl.eval()
def build_textencoder(self):
self.text_encoder = T5EncoderModel.from_pretrained("t5-base")
self.text_encoder.cuda(self.args.local_rank)
self.text_encoder.requires_grad_(requires_grad=False)
self.text_encoder.eval()
def build_noise_scheduler(self):
nosie_scheduler = DDPMScheduler(
num_train_timesteps=self.cfg.model.noise_scheduler.num_train_timesteps,
beta_start=self.cfg.model.noise_scheduler.beta_start,
beta_end=self.cfg.model.noise_scheduler.beta_end,
beta_schedule=self.cfg.model.noise_scheduler.beta_schedule,
clip_sample=self.cfg.model.noise_scheduler.clip_sample,
# steps_offset=self.cfg.model.noise_scheduler.steps_offset,
# set_alpha_to_one=self.cfg.model.noise_scheduler.set_alpha_to_one,
# skip_prk_steps=self.cfg.model.noise_scheduler.skip_prk_steps,
prediction_type=self.cfg.model.noise_scheduler.prediction_type,
)
return nosie_scheduler
def build_dataset(self):
return AudioLDMDataset, AudioLDMCollator
def build_data_loader(self):
Dataset, Collator = self.build_dataset()
# build dataset instance for each dataset and combine them by ConcatDataset
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=False)
datasets_list.append(subdataset)
train_dataset = ConcatDataset(datasets_list)
train_collate = Collator(self.cfg)
# use batch_sampler argument instead of (sampler, shuffle, drop_last, batch_size)
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
num_workers=self.args.num_workers,
batch_size=self.cfg.train.batch_size,
pin_memory=False,
)
if not self.cfg.train.ddp or self.args.local_rank == 0:
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
valid_dataset = ConcatDataset(datasets_list)
valid_collate = Collator(self.cfg)
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
num_workers=1,
batch_size=self.cfg.train.batch_size,
)
else:
raise NotImplementedError("DDP is not supported yet.")
# valid_loader = None
data_loader = {"train": train_loader, "valid": valid_loader}
return data_loader
def build_optimizer(self):
optimizer = torch.optim.AdamW(self.model.parameters(), **self.cfg.train.adam)
return optimizer
# TODO: check it...
def build_scheduler(self):
return None
# return ReduceLROnPlateau(self.optimizer["opt_ae"], **self.cfg.train.lronPlateau)
def write_summary(self, losses, stats):
for key, value in losses.items():
self.sw.add_scalar(key, value, self.step)
def write_valid_summary(self, losses, stats):
for key, value in losses.items():
self.sw.add_scalar(key, value, self.step)
def build_criterion(self):
criterion = nn.MSELoss(reduction="mean")
return criterion
def get_state_dict(self):
if self.scheduler != None:
state_dict = {
"model": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
else:
state_dict = {
"model": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def load_model(self, checkpoint):
self.step = checkpoint["step"]
self.epoch = checkpoint["epoch"]
self.model.load_state_dict(checkpoint["model"])
self.optimizer.load_state_dict(checkpoint["optimizer"])
if self.scheduler != None:
self.scheduler.load_state_dict(checkpoint["scheduler"])
def build_model(self):
self.model = AudioLDM(self.cfg.model.audioldm)
return self.model
@torch.no_grad()
def mel_to_latent(self, melspec):
posterior = self.autoencoderkl.encode(melspec)
latent = posterior.sample() # (B, 4, 5, 78)
return latent
@torch.no_grad()
def get_text_embedding(self, text_input_ids, text_attention_mask):
text_embedding = self.text_encoder(
input_ids=text_input_ids, attention_mask=text_attention_mask
).last_hidden_state
return text_embedding # (B, T, 768)
def train_step(self, data):
train_losses = {}
total_loss = 0
train_stats = {}
melspec = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T)
latents = self.mel_to_latent(melspec)
text_embedding = self.get_text_embedding(
data["text_input_ids"], data["text_attention_mask"]
)
noise = torch.randn_like(latents).float()
bsz = latents.shape[0]
timesteps = torch.randint(
0,
self.cfg.model.noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
with torch.no_grad():
noisy_latents = self.nosie_scheduler.add_noise(latents, noise, timesteps)
model_pred = self.model(
noisy_latents, timesteps=timesteps, context=text_embedding
)
loss = self.criterion(model_pred, noise)
train_losses["loss"] = loss
total_loss += loss
self.optimizer.zero_grad()
total_loss.backward()
self.optimizer.step()
for item in train_losses:
train_losses[item] = train_losses[item].item()
return train_losses, train_stats, total_loss.item()
# TODO: eval step
@torch.no_grad()
def eval_step(self, data, index):
valid_loss = {}
total_valid_loss = 0
valid_stats = {}
melspec = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T)
latents = self.mel_to_latent(melspec)
text_embedding = self.get_text_embedding(
data["text_input_ids"], data["text_attention_mask"]
)
noise = torch.randn_like(latents).float()
bsz = latents.shape[0]
timesteps = torch.randint(
0,
self.cfg.model.noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
noisy_latents = self.nosie_scheduler.add_noise(latents, noise, timesteps)
model_pred = self.model(noisy_latents, timesteps, text_embedding)
loss = self.criterion(model_pred, noise)
valid_loss["loss"] = loss
total_valid_loss += loss
for item in valid_loss:
valid_loss[item] = valid_loss[item].item()
return valid_loss, valid_stats, total_valid_loss.item()
|