Spaces:
Runtime error
Runtime error
File size: 12,173 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import os
import json5
from tqdm import tqdm
import json
import shutil
from models.svc.base import SVCTrainer
from modules.encoder.condition_encoder import ConditionEncoder
from models.svc.comosvc.comosvc import ComoSVC
class ComoSVCTrainer(SVCTrainer):
r"""The base trainer for all diffusion models. It inherits from SVCTrainer and
implements ``_build_model`` and ``_forward_step`` methods.
"""
def __init__(self, args=None, cfg=None):
SVCTrainer.__init__(self, args, cfg)
self.distill = cfg.model.comosvc.distill
self.skip_diff = True
### Following are methods only for comoSVC models ###
def _load_teacher_model(self, model):
r"""Load teacher model from checkpoint file."""
self.checkpoint_file = self.teacher_model_path
self.logger.info(
"Load teacher acoustic model from {}".format(self.checkpoint_file)
)
raw_dict = torch.load(self.checkpoint_file)
model.load_state_dict(raw_dict)
def _build_model(self):
r"""Build the model for training. This function is called in ``__init__`` function."""
# TODO: sort out the config
self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min
self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max
self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder)
self.acoustic_mapper = ComoSVC(self.cfg)
model = torch.nn.ModuleList([self.condition_encoder, self.acoustic_mapper])
if self.cfg.model.comosvc.distill:
if not self.args.resume:
# do not load teacher model when resume
self.teacher_model_path = self.cfg.model.teacher_model_path
self._load_teacher_model(model)
# build teacher & target decoder and freeze teacher
self.acoustic_mapper.decoder.init_consistency_training()
self.freeze_net(self.condition_encoder)
self.freeze_net(self.acoustic_mapper.encoder)
self.freeze_net(self.acoustic_mapper.decoder.denoise_fn_pretrained)
self.freeze_net(self.acoustic_mapper.decoder.denoise_fn_ema)
return model
def freeze_net(self, model):
r"""Freeze the model for training."""
for name, param in model.named_parameters():
param.requires_grad = False
def __build_optimizer(self):
r"""Build optimizer for training. This function is called in ``__init__`` function."""
if self.cfg.train.optimizer.lower() == "adamw":
optimizer = torch.optim.AdamW(
params=filter(lambda p: p.requires_grad, self.model.parameters()),
**self.cfg.train.adamw,
)
else:
raise NotImplementedError(
"Not support optimizer: {}".format(self.cfg.train.optimizer)
)
return optimizer
def _forward_step(self, batch):
r"""Forward step for training and inference. This function is called
in ``_train_step`` & ``_test_step`` function.
"""
loss = {}
mask = batch["mask"]
mel_input = batch["mel"]
cond = self.condition_encoder(batch)
if self.distill:
cond = cond.detach()
self.skip_diff = True if self.step < self.cfg.train.fast_steps else False
ssim_loss, prior_loss, diff_loss = self.acoustic_mapper.compute_loss(
mask, cond, mel_input, skip_diff=self.skip_diff
)
if self.distill:
loss["distil_loss"] = diff_loss
else:
loss["ssim_loss_encoder"] = ssim_loss
loss["prior_loss_encoder"] = prior_loss
loss["diffusion_loss_decoder"] = diff_loss
return loss
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model.train()
epoch_sum_loss: float = 0.0
epoch_step: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Do training step and BP
with self.accelerator.accumulate(self.model):
loss = self._train_step(batch)
total_loss = 0
for k, v in loss.items():
total_loss += v
self.accelerator.backward(total_loss)
enc_grad_norm = torch.nn.utils.clip_grad_norm_(
self.acoustic_mapper.encoder.parameters(), max_norm=1
)
dec_grad_norm = torch.nn.utils.clip_grad_norm_(
self.acoustic_mapper.decoder.parameters(), max_norm=1
)
self.optimizer.step()
self.optimizer.zero_grad()
self.batch_count += 1
# Update info for each step
# TODO: step means BP counts or batch counts?
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
epoch_sum_loss += total_loss
log_info = {}
for k, v in loss.items():
key = "Step/Train Loss/{}".format(k)
log_info[key] = v
log_info["Step/Learning Rate"] = self.optimizer.param_groups[0]["lr"]
self.accelerator.log(
log_info,
step=self.step,
)
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
return (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step,
loss,
)
def train_loop(self):
r"""Training loop. The public entry of training process."""
# Wait everyone to prepare before we move on
self.accelerator.wait_for_everyone()
# dump config file
if self.accelerator.is_main_process:
self.__dump_cfg(self.config_save_path)
self.model.train()
self.optimizer.zero_grad()
# Wait to ensure good to go
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
### TODO: change the return values of _train_epoch() to a loss dict, or (total_loss, loss_dict)
### It's inconvenient for the model with multiple losses
# Do training & validating epoch
train_loss, loss = self._train_epoch()
self.logger.info(" |- Train/Loss: {:.6f}".format(train_loss))
for k, v in loss.items():
self.logger.info(" |- Train/Loss/{}: {:.6f}".format(k, v))
valid_loss = self._valid_epoch()
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_loss))
self.accelerator.log(
{"Epoch/Train Loss": train_loss, "Epoch/Valid Loss": valid_loss},
step=self.epoch,
)
self.accelerator.wait_for_everyone()
# TODO: what is scheduler?
self.scheduler.step(valid_loss) # FIXME: use epoch track correct?
# Check if hit save_checkpoint_stride and run_eval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
hit_dix = []
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
hit_dix.append(i)
run_eval |= self.run_eval[i]
self.accelerator.wait_for_everyone()
if (
self.accelerator.is_main_process
and save_checkpoint
and (self.distill or not self.skip_diff)
):
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, train_loss
),
)
self.tmp_checkpoint_save_path = path
self.accelerator.save_state(path)
print(f"save checkpoint in {path}")
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
self._save_auxiliary_states()
# Remove old checkpoints
to_remove = []
for idx in hit_dix:
self.checkpoints_path[idx].append(path)
while len(self.checkpoints_path[idx]) > self.keep_last[idx]:
to_remove.append((idx, self.checkpoints_path[idx].pop(0)))
# Search conflicts
total = set()
for i in self.checkpoints_path:
total |= set(i)
do_remove = set()
for idx, path in to_remove[::-1]:
if path in total:
self.checkpoints_path[idx].insert(0, path)
else:
do_remove.add(path)
# Remove old checkpoints
for path in do_remove:
shutil.rmtree(path, ignore_errors=True)
self.logger.debug(f"Remove old checkpoint: {path}")
self.accelerator.wait_for_everyone()
if run_eval:
# TODO: run evaluation
pass
# Update info for each epoch
self.epoch += 1
# Finish training and save final checkpoint
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
self.accelerator.save_state(
os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_loss
),
)
)
self._save_auxiliary_states()
self.accelerator.end_training()
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model.eval()
epoch_sum_loss = 0.0
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
batch_loss = self._valid_step(batch)
for k, v in batch_loss.items():
epoch_sum_loss += v
self.accelerator.wait_for_everyone()
return epoch_sum_loss / len(self.valid_dataloader)
@staticmethod
def __count_parameters(model):
model_param = 0.0
if isinstance(model, dict):
for key, value in model.items():
model_param += sum(p.numel() for p in model[key].parameters())
else:
model_param = sum(p.numel() for p in model.parameters())
return model_param
def __dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
|