# app.py from transformers import AutoTokenizer, AutoModelForCausalLM import requests import gradio as gr import torch # Load the CodeParrot model and tokenizer (only once) model_name = "codeparrot/codeparrot-small" # CodeParrot model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Groq API configuration GROQ_API_KEY = "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" GROQ_API_URL = "https://api.groq.com/v1/completions" # Function to query Groq API def query_groq(prompt): headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json" } data = { "prompt": prompt, "max_tokens": 150 } response = requests.post(GROQ_API_URL, headers=headers, json=data) return response.json()["choices"][0]["text"] # Function to generate smart contract code def generate_smart_contract(language, requirements): # Create a prompt for the model prompt = f"Generate a {language} smart contract with the following requirements: {requirements}" # Use the CodeParrot model to generate code inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") outputs = model.generate(**inputs, max_length=300) # Increased max_length for better results generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) # Enhance the code using Groq API enhanced_code = query_groq(generated_code) return enhanced_code # Custom CSS for a 3D CGI Figma-like feel custom_css = """ body { font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%); color: #fff; perspective: 1000px; overflow: hidden; } .gradio-container { background: rgba(255, 255, 255, 0.1); border-radius: 15px; padding: 20px; box-shadow: 0 4px 30px rgba(0, 0, 0, 0.1); backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.3); transform-style: preserve-3d; transform: rotateY(0deg) rotateX(0deg); transition: transform 0.5s ease; } .gradio-container:hover { transform: rotateY(10deg) rotateX(10deg); } .gradio-input, .gradio-output { background: rgba(255, 255, 255, 0.2); border: none; border-radius: 10px; padding: 10px; color: #fff; transform-style: preserve-3d; transition: transform 0.3s ease; } .gradio-input:focus, .gradio-output:focus { background: rgba(255, 255, 255, 0.3); outline: none; transform: translateZ(20px); } .gradio-button { background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%); border: none; border-radius: 10px; color: #fff; padding: 10px 20px; font-size: 16px; cursor: pointer; transition: background 0.3s ease, transform 0.3s ease; transform-style: preserve-3d; } .gradio-button:hover { background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%); transform: translateZ(10px); } h1 { text-align: center; font-size: 2.5em; margin-bottom: 20px; color: white; /* White title color */ transform-style: preserve-3d; transform: translateZ(30px); } @keyframes float { 0% { transform: translateY(0) translateZ(0); } 50% { transform: translateY(-10px) translateZ(10px); } 100% { transform: translateY(0) translateZ(0); } } .gradio-container { animation: float 4s ease-in-out infinite; } """ # Gradio interface for the app def generate_contract(language, requirements): return generate_smart_contract(language, requirements) # Dropdown options for programming languages languages = ["Solidity", "Vyper", "Rust", "JavaScript", "Python"] interface = gr.Interface( fn=generate_contract, inputs=[ gr.Dropdown(label="Programming Language", choices=languages, value="Solidity"), # Dropdown menu gr.Textbox(label="Requirements", placeholder="e.g., ERC20 token with minting functionality") ], outputs=gr.Textbox(label="Generated Smart Contract"), title="Smart Contract Generator", description="Generate smart contracts using AI.", css=custom_css ) # Launch the Gradio app if __name__ == "__main__": interface.launch()