Spaces:
Sleeping
Sleeping
"""NovoGrad Optimizer. | |
Original impl by Masashi Kimura (Convergence Lab): https://github.com/convergence-lab/novograd | |
Paper: `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks` | |
- https://arxiv.org/abs/1905.11286 | |
""" | |
import torch | |
from torch.optim.optimizer import Optimizer | |
import math | |
class NovoGrad(Optimizer): | |
def __init__(self, params, grad_averaging=False, lr=0.1, betas=(0.95, 0.98), eps=1e-8, weight_decay=0): | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
super(NovoGrad, self).__init__(params, defaults) | |
self._lr = lr | |
self._beta1 = betas[0] | |
self._beta2 = betas[1] | |
self._eps = eps | |
self._wd = weight_decay | |
self._grad_averaging = grad_averaging | |
self._momentum_initialized = False | |
def step(self, closure=None): | |
loss = None | |
if closure is not None: | |
loss = closure() | |
if not self._momentum_initialized: | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
state = self.state[p] | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError('NovoGrad does not support sparse gradients') | |
v = torch.norm(grad)**2 | |
m = grad/(torch.sqrt(v) + self._eps) + self._wd * p.data | |
state['step'] = 0 | |
state['v'] = v | |
state['m'] = m | |
state['grad_ema'] = None | |
self._momentum_initialized = True | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
state = self.state[p] | |
state['step'] += 1 | |
step, v, m = state['step'], state['v'], state['m'] | |
grad_ema = state['grad_ema'] | |
grad = p.grad.data | |
g2 = torch.norm(grad)**2 | |
grad_ema = g2 if grad_ema is None else grad_ema * \ | |
self._beta2 + g2 * (1. - self._beta2) | |
grad *= 1.0 / (torch.sqrt(grad_ema) + self._eps) | |
if self._grad_averaging: | |
grad *= (1. - self._beta1) | |
g2 = torch.norm(grad)**2 | |
v = self._beta2*v + (1. - self._beta2)*g2 | |
m = self._beta1*m + (grad / (torch.sqrt(v) + self._eps) + self._wd * p.data) | |
bias_correction1 = 1 - self._beta1 ** step | |
bias_correction2 = 1 - self._beta2 ** step | |
step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 | |
state['v'], state['m'] = v, m | |
state['grad_ema'] = grad_ema | |
p.data.add_(-step_size, m) | |
return loss | |