File size: 13,778 Bytes
3ec9224
5be8df6
3ec9224
5be8df6
 
 
 
 
 
 
 
 
3ec9224
1ef8d7c
 
 
5be8df6
 
 
 
 
 
 
146ca67
5be8df6
88fa380
b1ec9ac
 
 
e27125d
 
 
 
 
b29f15d
b1ec9ac
5be8df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef8d7c
5be8df6
1ef8d7c
5be8df6
 
 
1ef8d7c
 
6f79ea2
5be8df6
 
 
 
 
 
 
 
88fa380
5be8df6
 
 
 
 
 
 
 
067316d
5be8df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
067316d
 
 
88fa380
 
 
 
 
 
067316d
 
 
e27125d
 
 
 
2239106
067316d
 
 
 
 
 
 
5be8df6
eb94a8f
5be8df6
 
9733941
5be8df6
 
 
 
 
 
 
 
 
 
 
9733941
5be8df6
 
 
 
00bd139
5be8df6
 
00bd139
5be8df6
 
 
 
1ef8d7c
 
 
5be8df6
 
 
 
 
 
1ef8d7c
5be8df6
1ef8d7c
5be8df6
 
 
09444af
5be8df6
e0b45d0
00bd139
 
5be8df6
 
 
 
 
 
 
 
 
 
00bd139
5be8df6
 
 
 
 
9733941
 
 
 
 
 
 
 
 
5be8df6
 
9733941
 
00bd139
5be8df6
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca2785
00bd139
1ef8d7c
5be8df6
 
1da1e92
eb94a8f
 
9733941
ceae871
5be8df6
 
 
fe331ff
5be8df6
 
a25f0eb
 
5be8df6
9733941
5be8df6
4f52c44
5be8df6
a25f0eb
5be8df6
1e93bea
5be8df6
8aeeae1
5be8df6
b1ec9ac
a25f0eb
 
e4c8a25
 
 
 
 
 
5be8df6
8aeeae1
5be8df6
1e93bea
5be8df6
8aeeae1
14155e5
9733941
 
 
 
 
 
 
5be8df6
 
 
 
 
 
 
 
9733941
 
1ef8d7c
9733941
 
00bd139
9733941
 
 
5be8df6
 
9733941
00bd139
 
9733941
 
00bd139
 
9733941
 
 
 
 
323ccbe
5be8df6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import gradio as gr
import os

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings 
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub

from pathlib import Path
import chromadb

from transformers import AutoTokenizer
import transformers
import torch
import tqdm 
import accelerate


# default_persist_directory = './chroma_HF/'

llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
llm_name1 = "mistralai/Mistral-7B-Instruct-v0.2"
llm_name2 = "mistralai/Mistral-7B-Instruct-v0.1"
llm_name3 = "meta-llama/Llama-2-7b-chat-hf"
llm_name4 = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
llm_name5 = "microsoft/phi-2"
llm_name6 = "mosaicml/mpt-7b-instruct"
llm_name7 = "tiiuae/falcon-7b-instruct"
llm_name8 = "google/flan-t5-xxl"
list_llm = [llm_name0, llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7, llm_name8]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits


# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
        # persist_directory=default_persist_directory
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        # persist_directory=default_persist_directory, 
        embedding_function=embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    # HuggingFacePipeline uses local model
    # Note: it will download model locally...
    # tokenizer=AutoTokenizer.from_pretrained(llm_model)
    # progress(0.5, desc="Initializing HF pipeline...")
    # pipeline=transformers.pipeline(
    #     "text-generation",
    #     model=llm_model,
    #     tokenizer=tokenizer,
    #     torch_dtype=torch.bfloat16,
    #     trust_remote_code=True,
    #     device_map="auto",
    #     # max_length=1024,
    #     max_new_tokens=max_tokens,
    #     do_sample=True,
    #     top_k=top_k,
    #     num_return_sequences=1,
    #     eos_token_id=tokenizer.eos_token_id
    #     )
    # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
    
    # HuggingFaceHub uses HF inference endpoints
    progress(0.5, desc="Initializing HF Hub...")
    # Use of trust_remote_code as model_kwargs
    # Warning: langchain issue
    # URL: https://github.com/langchain-ai/langchain/issues/6080
    if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
        )
    elif llm_model == "microsoft/phi-2":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
        )
    elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
        )
    else:
        llm = HuggingFaceHub(
            repo_id=llm_model, 
            # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
            model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
        )
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
    retriever=vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        return_source_documents=True,
        # return_generated_question=True,
        # verbose=True,
    )
    progress(0.9, desc="Done!")
    return qa_chain


# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    # Create list of documents (when valid)
    #file_path = file_obj.name
    list_file_path = [x.name for x in list_file_obj if x is not None]
    collection_name = Path(list_file_path[0]).stem
    # print('list_file_path: ', list_file_path)
    # print('Collection name: ', collection_name)
    progress(0.25, desc="Loading document...")
    # Load document and create splits
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    # Create or load Vector database
    progress(0.5, desc="Generating vector database...")
    # global vector_db
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"


def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    # print("llm_option",llm_option)
    llm_name = list_llm[llm_option]
    print("llm_name: ",llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history
    

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    #print("formatted_chat_history",formatted_chat_history)
   
    # Generate response using QA chain
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    # print ('chat response: ', response_answer)
    # print('DB source', response_sources)
    
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    # return gr.update(value=""), new_history, response_sources[0], response_sources[1] 
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page
    

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    # print(file_path)
    # initialize_database(file_path, progress)
    return list_file_path


def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        
        gr.Markdown(
        """<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
        <h3>Ask any questions about your PDF documents, along with follow-ups</h3>
        <b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
        When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
        <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
        """)
        with gr.Tab("Step 1 - Document pre-processing"):
            with gr.Row():
                document = gr.Files(height=50, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
                # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
            with gr.Row():
                db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
            with gr.Accordion("Advanced options - Document text splitter", open=False):
                with gr.Row():
                    slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
                with gr.Row():
                    slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
            with gr.Row():
                db_progress = gr.Textbox(label="Vector database initialization", value="None")
            with gr.Row():
                db_btn = gr.Button("Generate vector database...")
            
        with gr.Tab("Step 2 - QA chain initialization"):
            with gr.Row():
                llm_btn = gr.Radio(list_llm_simple, \
                    label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
            with gr.Accordion("Advanced options - LLM model", open=False):
                with gr.Row():
                    slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
                with gr.Row():
                    slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
                with gr.Row():
                    slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
            with gr.Row():
                llm_progress = gr.Textbox(value="None",label="QA chain initialization")
            with gr.Row():
                qachain_btn = gr.Button("Initialize question-answering chain...")

        with gr.Tab("Step 3 - Conversation with chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit")
                clear_btn = gr.ClearButton([msg, chatbot])
            
        # Preprocessing events
        #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        db_btn.click(initialize_database, \
            inputs=[document, slider_chunk_size, slider_chunk_overlap], \
            outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, \
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
            queue=False)

        # Chatbot events
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
            queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page], \
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page], \
            queue=False)
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    demo()