File size: 8,703 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Zhenyu Li


import torch
import torch.nn as nn
import torch.nn.functional as F
from zoedepth.models.layers.swin_layers import G2LFusion
from zoedepth.models.layers.transformer import TransformerEncoder, TransformerEncoderLayer
from torchvision.ops import roi_align as torch_roi_align

class DoubleConvWOBN(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=True),
            # nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=True),
            # nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True))

    def forward(self, x):
        return self.double_conv(x)

class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)
    

class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)

class Upv1(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

        if mid_channels is not None:
            self.conv = DoubleConvWOBN(in_channels, out_channels, mid_channels)
        else:
            self.conv = DoubleConvWOBN(in_channels, out_channels, in_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)
    
class UNetv1(nn.Module):
    def __init__(self, n_channels, g2l, pos_embed=False, use_area_prior=True):
        super(UNetv1, self).__init__()
        self.n_channels = n_channels

        self.inc = DoubleConv(n_channels, 32)
        self.down1 = Down(32, 256)
        self.down2 = Down(256, 256)
        self.down3 = Down(256, 256)
        self.down4 = Down(256, 256)
        self.down5 = Down(256, 256)

        self.up1 = Upv1(256+256+256, 256, 384)
        self.up2 = Upv1(256+256+256, 256, 384)
        self.up3 = Upv1(256+256+256, 256, 384)
        self.up4 = Upv1(256+256+256, 256, 384)
        self.up5 = Upv1(256+32+256, 32, 272)

        self.g2l = g2l
        
        if self.g2l:
            self.g2l_att = nn.ModuleList()
            win = 12
            in_channels = [32, 256, 256, 256, 256, 256]
            crf_dims = [32, 256, 256, 256, 256, 256]

            self.g2l5 = G2LFusion(input_dim=in_channels[5], embed_dim=crf_dims[5], window_size=win, num_heads=32, depth=4, num_patches=12*16)
            self.g2l4 = G2LFusion(input_dim=in_channels[4], embed_dim=crf_dims[4], window_size=win, num_heads=32, depth=4, num_patches=24*32)
            self.g2l3 = G2LFusion(input_dim=in_channels[3], embed_dim=crf_dims[3], window_size=win, num_heads=16, depth=3, num_patches=48*64)
            self.g2l2 = G2LFusion(input_dim=in_channels[2], embed_dim=crf_dims[2], window_size=win, num_heads=16, depth=3, num_patches=96*128)
            self.g2l1 = G2LFusion(input_dim=in_channels[1], embed_dim=crf_dims[1], window_size=win, num_heads=8, depth=2, num_patches=192*256)
            self.g2l0 = G2LFusion(input_dim=in_channels[0], embed_dim=crf_dims[0], window_size=win, num_heads=8, depth=2, num_patches=384*512) 

            self.conv5 = DoubleConvWOBN(in_channels[4] * 2, in_channels[4], in_channels[4])
            self.conv4 = DoubleConvWOBN(in_channels[4] * 2, in_channels[4], in_channels[4])
            self.conv3 = DoubleConvWOBN(in_channels[3] * 2, in_channels[3], in_channels[3])
            self.conv2 = DoubleConvWOBN(in_channels[2] * 2, in_channels[2], in_channels[2])
            self.conv1 = DoubleConvWOBN(in_channels[1] * 2, in_channels[1], in_channels[1])
            self.conv0 = DoubleConvWOBN(in_channels[0] * 2, in_channels[0], in_channels[0])
            
    def forward(self, 
                input_tensor, 
                guide_plus, 
                guide_cat, 
                crop_area_resize=None, 
                bbox=None, 
                fine_feat_crop=None, 
                coarse_feat_whole=None, 
                coarse_feat_whole_hack=None, 
                coarse_feat_crop=None):

        # apply unscaled feat to swin
        if coarse_feat_whole_hack is not None:
            coarse_feat_whole = coarse_feat_whole_hack

        if crop_area_resize is None:
            not_use_prior = True
        else:
            not_use_prior = False
        
        x1 = self.inc(input_tensor)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3) 
        x5 = self.down4(x4)
        x6 = self.down5(x5)
        if self.g2l:
            g2l_feat5 = self.g2l5(coarse_feat_whole[0], crop_area_resize[0])
            g2l_feat5 = torch_roi_align(g2l_feat5, bbox, (12, 16), 12/384, aligned=True)
            x6 = self.conv5(torch.cat([x6, g2l_feat5], dim=1))
  
        x5 = self.up1(torch.cat([x6, guide_cat[0]], dim=1), x5)
        if self.g2l:
            g2l_feat4 = self.g2l4(coarse_feat_whole[1], crop_area_resize[1])
            g2l_feat4 = torch_roi_align(g2l_feat4, bbox, (24, 32), 24/384, aligned=True)
            x5 = self.conv4(torch.cat([x5, g2l_feat4], dim=1))   

        x4 = self.up2(torch.cat([x5, guide_cat[1]], dim=1), x4)
        if self.g2l:
            g2l_feat3 = self.g2l3(coarse_feat_whole[2], crop_area_resize[2])
            g2l_feat3 = torch_roi_align(g2l_feat3, bbox, (48, 64), 48/384, aligned=True)
            x4 = self.conv3(torch.cat([x4, g2l_feat3], dim=1))

        x3 = self.up3(torch.cat([x4, guide_cat[2]], dim=1), x3)
        if self.g2l:
            g2l_feat2 = self.g2l2(coarse_feat_whole[3], crop_area_resize[3])
            g2l_feat2 = torch_roi_align(g2l_feat2, bbox, (96, 128), 96/384, aligned=True)
            x3 = self.conv2(torch.cat([x3, g2l_feat2], dim=1))

        x2 = self.up4(torch.cat([x3, guide_cat[3]], dim=1), x2)
        if self.g2l:
            g2l_feat1 = self.g2l1(coarse_feat_whole[4], crop_area_resize[4])
            g2l_feat1 = torch_roi_align(g2l_feat1, bbox, (192, 256), 192/384, aligned=True)
            x2 = self.conv1(torch.cat([x2, g2l_feat1], dim=1))

        x1 = self.up5(torch.cat([x2, guide_cat[4]], dim=1), x1)
        if self.g2l:
            g2l_feat0 = self.g2l0(coarse_feat_whole[5], crop_area_resize[5])
            g2l_feat0 = torch_roi_align(g2l_feat0, bbox, (384, 512), 384/384, aligned=True)
            x1 = self.conv0(torch.cat([x1, g2l_feat0], dim=1))

        output = [x1, x2, x3, x4, x5, x6]
        return output