File size: 6,767 Bytes
78ab311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import torch
import torch.nn as nn


def log_binom(n, k, eps=1e-7):
    """ log(nCk) using stirling approximation """
    n = n + eps
    k = k + eps
    return n * torch.log(n) - k * torch.log(k) - (n-k) * torch.log(n-k+eps)


class LogBinomial(nn.Module):
    def __init__(self, n_classes=256, act=torch.softmax):
        """Compute log binomial distribution for n_classes

        Args:
            n_classes (int, optional): number of output classes. Defaults to 256.
        """
        super().__init__()
        self.K = n_classes
        self.act = act
        self.register_buffer('k_idx', torch.arange(
            0, n_classes).view(1, -1, 1, 1))
        self.register_buffer('K_minus_1', torch.Tensor(
            [self.K-1]).view(1, -1, 1, 1))

    def forward(self, x, t=1., eps=1e-4):
        """Compute log binomial distribution for x

        Args:
            x (torch.Tensor - NCHW): probabilities
            t (float, torch.Tensor - NCHW, optional): Temperature of distribution. Defaults to 1..
            eps (float, optional): Small number for numerical stability. Defaults to 1e-4.

        Returns:
            torch.Tensor -NCHW: log binomial distribution logbinomial(p;t)
        """
        if x.ndim == 3:
            x = x.unsqueeze(1)  # make it nchw

        one_minus_x = torch.clamp(1 - x, eps, 1)
        x = torch.clamp(x, eps, 1)
        y = log_binom(self.K_minus_1, self.k_idx) + self.k_idx * \
            torch.log(x) + (self.K - 1 - self.k_idx) * torch.log(one_minus_x)
        return self.act(y/t, dim=1)


class ConditionalLogBinomial(nn.Module):
    def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax):
        """Conditional Log Binomial distribution

        Args:
            in_features (int): number of input channels in main feature
            condition_dim (int): number of input channels in condition feature
            n_classes (int, optional): Number of classes. Defaults to 256.
            bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2.
            p_eps (float, optional): small eps value. Defaults to 1e-4.
            max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50.
            min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
        """
        super().__init__()
        self.p_eps = p_eps
        self.max_temp = max_temp
        self.min_temp = min_temp
        self.log_binomial_transform = LogBinomial(n_classes, act=act)
        bottleneck = (in_features + condition_dim) // bottleneck_factor
        self.mlp = nn.Sequential(
            nn.Conv2d(in_features + condition_dim, bottleneck,
                      kernel_size=1, stride=1, padding=0),
            nn.GELU(),
            # 2 for p linear norm, 2 for t linear norm
            nn.Conv2d(bottleneck, 2+2, kernel_size=1, stride=1, padding=0),
            nn.Softplus()
        )

    def forward(self, x, cond):
        """Forward pass

        Args:
            x (torch.Tensor - NCHW): Main feature
            cond (torch.Tensor - NCHW): condition feature

        Returns:
            torch.Tensor: Output log binomial distribution
        """
        pt = self.mlp(torch.concat((x, cond), dim=1))
        p, t = pt[:, :2, ...], pt[:, 2:, ...]

        p = p + self.p_eps
        p = p[:, 0, ...] / (p[:, 0, ...] + p[:, 1, ...])

        t = t + self.p_eps
        t = t[:, 0, ...] / (t[:, 0, ...] + t[:, 1, ...])
        t = t.unsqueeze(1)
        t = (self.max_temp - self.min_temp) * t + self.min_temp

        return self.log_binomial_transform(p, t)


class ConditionalLogBinomialV2(nn.Module):
    def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax):
        """Conditional Log Binomial distribution

        Args:
            in_features (int): number of input channels in main feature
            condition_dim (int): number of input channels in condition feature
            n_classes (int, optional): Number of classes. Defaults to 256.
            bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2.
            p_eps (float, optional): small eps value. Defaults to 1e-4.
            max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50.
            min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
        """
        super().__init__()
        self.p_eps = p_eps
        self.max_temp = max_temp
        self.min_temp = min_temp
        self.log_binomial_transform = LogBinomial(n_classes, act=act)
        bottleneck = (in_features + condition_dim) // bottleneck_factor
        self.mlp = nn.Sequential(
            nn.Conv2d(in_features + condition_dim, bottleneck,
                      kernel_size=1, stride=1, padding=0),
            nn.GELU(),
            # 2 for p linear norm, 2 for t linear norm
            nn.Conv2d(bottleneck, n_classes*2, kernel_size=1, stride=1, padding=0),
            nn.Sigmoid()
        )
        self.n_classes = n_classes


    def forward(self, x, cond):
        """Forward pass

        Args:
            x (torch.Tensor - NCHW): Main feature
            cond (torch.Tensor - NCHW): condition feature

        Returns:
            torch.Tensor: Output log binomial distribution
        """
        pt = self.mlp(torch.concat((x, cond), dim=1))
        prob, shift = pt[:, :self.n_classes, ...], pt[:, self.n_classes:, ...]
        return prob, shift