Spaces:
Runtime error
Runtime error
File size: 6,767 Bytes
78ab311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import torch
import torch.nn as nn
def log_binom(n, k, eps=1e-7):
""" log(nCk) using stirling approximation """
n = n + eps
k = k + eps
return n * torch.log(n) - k * torch.log(k) - (n-k) * torch.log(n-k+eps)
class LogBinomial(nn.Module):
def __init__(self, n_classes=256, act=torch.softmax):
"""Compute log binomial distribution for n_classes
Args:
n_classes (int, optional): number of output classes. Defaults to 256.
"""
super().__init__()
self.K = n_classes
self.act = act
self.register_buffer('k_idx', torch.arange(
0, n_classes).view(1, -1, 1, 1))
self.register_buffer('K_minus_1', torch.Tensor(
[self.K-1]).view(1, -1, 1, 1))
def forward(self, x, t=1., eps=1e-4):
"""Compute log binomial distribution for x
Args:
x (torch.Tensor - NCHW): probabilities
t (float, torch.Tensor - NCHW, optional): Temperature of distribution. Defaults to 1..
eps (float, optional): Small number for numerical stability. Defaults to 1e-4.
Returns:
torch.Tensor -NCHW: log binomial distribution logbinomial(p;t)
"""
if x.ndim == 3:
x = x.unsqueeze(1) # make it nchw
one_minus_x = torch.clamp(1 - x, eps, 1)
x = torch.clamp(x, eps, 1)
y = log_binom(self.K_minus_1, self.k_idx) + self.k_idx * \
torch.log(x) + (self.K - 1 - self.k_idx) * torch.log(one_minus_x)
return self.act(y/t, dim=1)
class ConditionalLogBinomial(nn.Module):
def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax):
"""Conditional Log Binomial distribution
Args:
in_features (int): number of input channels in main feature
condition_dim (int): number of input channels in condition feature
n_classes (int, optional): Number of classes. Defaults to 256.
bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2.
p_eps (float, optional): small eps value. Defaults to 1e-4.
max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50.
min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
"""
super().__init__()
self.p_eps = p_eps
self.max_temp = max_temp
self.min_temp = min_temp
self.log_binomial_transform = LogBinomial(n_classes, act=act)
bottleneck = (in_features + condition_dim) // bottleneck_factor
self.mlp = nn.Sequential(
nn.Conv2d(in_features + condition_dim, bottleneck,
kernel_size=1, stride=1, padding=0),
nn.GELU(),
# 2 for p linear norm, 2 for t linear norm
nn.Conv2d(bottleneck, 2+2, kernel_size=1, stride=1, padding=0),
nn.Softplus()
)
def forward(self, x, cond):
"""Forward pass
Args:
x (torch.Tensor - NCHW): Main feature
cond (torch.Tensor - NCHW): condition feature
Returns:
torch.Tensor: Output log binomial distribution
"""
pt = self.mlp(torch.concat((x, cond), dim=1))
p, t = pt[:, :2, ...], pt[:, 2:, ...]
p = p + self.p_eps
p = p[:, 0, ...] / (p[:, 0, ...] + p[:, 1, ...])
t = t + self.p_eps
t = t[:, 0, ...] / (t[:, 0, ...] + t[:, 1, ...])
t = t.unsqueeze(1)
t = (self.max_temp - self.min_temp) * t + self.min_temp
return self.log_binomial_transform(p, t)
class ConditionalLogBinomialV2(nn.Module):
def __init__(self, in_features, condition_dim, n_classes=256, bottleneck_factor=2, p_eps=1e-4, max_temp=50, min_temp=1e-7, act=torch.softmax):
"""Conditional Log Binomial distribution
Args:
in_features (int): number of input channels in main feature
condition_dim (int): number of input channels in condition feature
n_classes (int, optional): Number of classes. Defaults to 256.
bottleneck_factor (int, optional): Hidden dim factor. Defaults to 2.
p_eps (float, optional): small eps value. Defaults to 1e-4.
max_temp (float, optional): Maximum temperature of output distribution. Defaults to 50.
min_temp (float, optional): Minimum temperature of output distribution. Defaults to 1e-7.
"""
super().__init__()
self.p_eps = p_eps
self.max_temp = max_temp
self.min_temp = min_temp
self.log_binomial_transform = LogBinomial(n_classes, act=act)
bottleneck = (in_features + condition_dim) // bottleneck_factor
self.mlp = nn.Sequential(
nn.Conv2d(in_features + condition_dim, bottleneck,
kernel_size=1, stride=1, padding=0),
nn.GELU(),
# 2 for p linear norm, 2 for t linear norm
nn.Conv2d(bottleneck, n_classes*2, kernel_size=1, stride=1, padding=0),
nn.Sigmoid()
)
self.n_classes = n_classes
def forward(self, x, cond):
"""Forward pass
Args:
x (torch.Tensor - NCHW): Main feature
cond (torch.Tensor - NCHW): condition feature
Returns:
torch.Tensor: Output log binomial distribution
"""
pt = self.mlp(torch.concat((x, cond), dim=1))
prob, shift = pt[:, :self.n_classes, ...], pt[:, self.n_classes:, ...]
return prob, shift
|