matutils fix
Browse files- Dockerfile +12 -0
- matutils.py +1354 -0
Dockerfile
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12.3
|
2 |
+
|
3 |
+
# Install pip requirements
|
4 |
+
COPY requirements.txt .
|
5 |
+
RUN python -m pip install -r requirements.txt
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
COPY ./matutils.py /home/adminuser/venv/lib/python3.11/site-packages/gensim/matutils.py
|
11 |
+
|
12 |
+
CMD ["python", "app.py"]
|
matutils.py
ADDED
@@ -0,0 +1,1354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
#
|
4 |
+
# Copyright (C) 2011 Radim Rehurek <[email protected]>
|
5 |
+
# Licensed under the GNU LGPL v2.1 - https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
|
6 |
+
|
7 |
+
"""Math helper functions."""
|
8 |
+
|
9 |
+
from __future__ import with_statement
|
10 |
+
|
11 |
+
|
12 |
+
import logging
|
13 |
+
import math
|
14 |
+
|
15 |
+
from gensim import utils
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import scipy.sparse
|
19 |
+
from scipy.stats import entropy
|
20 |
+
from scipy.linalg import get_blas_funcs#, triu
|
21 |
+
from scipy.linalg.lapack import get_lapack_funcs
|
22 |
+
from scipy.special import psi # gamma function utils
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
def blas(name, ndarray):
|
29 |
+
"""Helper for getting the appropriate BLAS function, using :func:`scipy.linalg.get_blas_funcs`.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
name : str
|
34 |
+
Name(s) of BLAS functions, without the type prefix.
|
35 |
+
ndarray : numpy.ndarray
|
36 |
+
Arrays can be given to determine optimal prefix of BLAS routines.
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
object
|
41 |
+
BLAS function for the needed operation on the given data type.
|
42 |
+
|
43 |
+
"""
|
44 |
+
return get_blas_funcs((name,), (ndarray,))[0]
|
45 |
+
|
46 |
+
|
47 |
+
def argsort(x, topn=None, reverse=False):
|
48 |
+
"""Efficiently calculate indices of the `topn` smallest elements in array `x`.
|
49 |
+
|
50 |
+
Parameters
|
51 |
+
----------
|
52 |
+
x : array_like
|
53 |
+
Array to get the smallest element indices from.
|
54 |
+
topn : int, optional
|
55 |
+
Number of indices of the smallest (greatest) elements to be returned.
|
56 |
+
If not given, indices of all elements will be returned in ascending (descending) order.
|
57 |
+
reverse : bool, optional
|
58 |
+
Return the `topn` greatest elements in descending order,
|
59 |
+
instead of smallest elements in ascending order?
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
numpy.ndarray
|
64 |
+
Array of `topn` indices that sort the array in the requested order.
|
65 |
+
|
66 |
+
"""
|
67 |
+
x = np.asarray(x) # unify code path for when `x` is not a np array (list, tuple...)
|
68 |
+
if topn is None:
|
69 |
+
topn = x.size
|
70 |
+
if topn <= 0:
|
71 |
+
return []
|
72 |
+
if reverse:
|
73 |
+
x = -x
|
74 |
+
if topn >= x.size or not hasattr(np, 'argpartition'):
|
75 |
+
return np.argsort(x)[:topn]
|
76 |
+
# np >= 1.8 has a fast partial argsort, use that!
|
77 |
+
most_extreme = np.argpartition(x, topn)[:topn]
|
78 |
+
return most_extreme.take(np.argsort(x.take(most_extreme))) # resort topn into order
|
79 |
+
|
80 |
+
|
81 |
+
def corpus2csc(corpus, num_terms=None, dtype=np.float64, num_docs=None, num_nnz=None, printprogress=0):
|
82 |
+
"""Convert a streamed corpus in bag-of-words format into a sparse matrix `scipy.sparse.csc_matrix`,
|
83 |
+
with documents as columns.
|
84 |
+
|
85 |
+
Notes
|
86 |
+
-----
|
87 |
+
If the number of terms, documents and non-zero elements is known, you can pass
|
88 |
+
them here as parameters and a (much) more memory efficient code path will be taken.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
corpus : iterable of iterable of (int, number)
|
93 |
+
Input corpus in BoW format
|
94 |
+
num_terms : int, optional
|
95 |
+
Number of terms in `corpus`. If provided, the `corpus.num_terms` attribute (if any) will be ignored.
|
96 |
+
dtype : data-type, optional
|
97 |
+
Data type of output CSC matrix.
|
98 |
+
num_docs : int, optional
|
99 |
+
Number of documents in `corpus`. If provided, the `corpus.num_docs` attribute (in any) will be ignored.
|
100 |
+
num_nnz : int, optional
|
101 |
+
Number of non-zero elements in `corpus`. If provided, the `corpus.num_nnz` attribute (if any) will be ignored.
|
102 |
+
printprogress : int, optional
|
103 |
+
Log a progress message at INFO level once every `printprogress` documents. 0 to turn off progress logging.
|
104 |
+
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
scipy.sparse.csc_matrix
|
108 |
+
`corpus` converted into a sparse CSC matrix.
|
109 |
+
|
110 |
+
See Also
|
111 |
+
--------
|
112 |
+
:class:`~gensim.matutils.Sparse2Corpus`
|
113 |
+
Convert sparse format to Gensim corpus format.
|
114 |
+
|
115 |
+
"""
|
116 |
+
try:
|
117 |
+
# if the input corpus has the `num_nnz`, `num_docs` and `num_terms` attributes
|
118 |
+
# (as is the case with MmCorpus for example), we can use a more efficient code path
|
119 |
+
if num_terms is None:
|
120 |
+
num_terms = corpus.num_terms
|
121 |
+
if num_docs is None:
|
122 |
+
num_docs = corpus.num_docs
|
123 |
+
if num_nnz is None:
|
124 |
+
num_nnz = corpus.num_nnz
|
125 |
+
except AttributeError:
|
126 |
+
pass # not a MmCorpus...
|
127 |
+
if printprogress:
|
128 |
+
logger.info("creating sparse matrix from corpus")
|
129 |
+
if num_terms is not None and num_docs is not None and num_nnz is not None:
|
130 |
+
# faster and much more memory-friendly version of creating the sparse csc
|
131 |
+
posnow, indptr = 0, [0]
|
132 |
+
indices = np.empty((num_nnz,), dtype=np.int32) # HACK assume feature ids fit in 32bit integer
|
133 |
+
data = np.empty((num_nnz,), dtype=dtype)
|
134 |
+
for docno, doc in enumerate(corpus):
|
135 |
+
if printprogress and docno % printprogress == 0:
|
136 |
+
logger.info("PROGRESS: at document #%i/%i", docno, num_docs)
|
137 |
+
posnext = posnow + len(doc)
|
138 |
+
# zip(*doc) transforms doc to (token_indices, token_counts]
|
139 |
+
indices[posnow: posnext], data[posnow: posnext] = zip(*doc) if doc else ([], [])
|
140 |
+
indptr.append(posnext)
|
141 |
+
posnow = posnext
|
142 |
+
assert posnow == num_nnz, "mismatch between supplied and computed number of non-zeros"
|
143 |
+
result = scipy.sparse.csc_matrix((data, indices, indptr), shape=(num_terms, num_docs), dtype=dtype)
|
144 |
+
else:
|
145 |
+
# slower version; determine the sparse matrix parameters during iteration
|
146 |
+
num_nnz, data, indices, indptr = 0, [], [], [0]
|
147 |
+
for docno, doc in enumerate(corpus):
|
148 |
+
if printprogress and docno % printprogress == 0:
|
149 |
+
logger.info("PROGRESS: at document #%i", docno)
|
150 |
+
|
151 |
+
# zip(*doc) transforms doc to (token_indices, token_counts]
|
152 |
+
doc_indices, doc_data = zip(*doc) if doc else ([], [])
|
153 |
+
indices.extend(doc_indices)
|
154 |
+
data.extend(doc_data)
|
155 |
+
num_nnz += len(doc)
|
156 |
+
indptr.append(num_nnz)
|
157 |
+
if num_terms is None:
|
158 |
+
num_terms = max(indices) + 1 if indices else 0
|
159 |
+
num_docs = len(indptr) - 1
|
160 |
+
# now num_docs, num_terms and num_nnz contain the correct values
|
161 |
+
data = np.asarray(data, dtype=dtype)
|
162 |
+
indices = np.asarray(indices)
|
163 |
+
result = scipy.sparse.csc_matrix((data, indices, indptr), shape=(num_terms, num_docs), dtype=dtype)
|
164 |
+
return result
|
165 |
+
|
166 |
+
|
167 |
+
def pad(mat, padrow, padcol):
|
168 |
+
"""Add additional rows/columns to `mat`. The new rows/columns will be initialized with zeros.
|
169 |
+
|
170 |
+
Parameters
|
171 |
+
----------
|
172 |
+
mat : numpy.ndarray
|
173 |
+
Input 2D matrix
|
174 |
+
padrow : int
|
175 |
+
Number of additional rows
|
176 |
+
padcol : int
|
177 |
+
Number of additional columns
|
178 |
+
|
179 |
+
Returns
|
180 |
+
-------
|
181 |
+
numpy.matrixlib.defmatrix.matrix
|
182 |
+
Matrix with needed padding.
|
183 |
+
|
184 |
+
"""
|
185 |
+
if padrow < 0:
|
186 |
+
padrow = 0
|
187 |
+
if padcol < 0:
|
188 |
+
padcol = 0
|
189 |
+
rows, cols = mat.shape
|
190 |
+
return np.block([
|
191 |
+
[mat, np.zeros((rows, padcol))],
|
192 |
+
[np.zeros((padrow, cols + padcol))],
|
193 |
+
])
|
194 |
+
|
195 |
+
|
196 |
+
def zeros_aligned(shape, dtype, order='C', align=128):
|
197 |
+
"""Get array aligned at `align` byte boundary in memory.
|
198 |
+
|
199 |
+
Parameters
|
200 |
+
----------
|
201 |
+
shape : int or (int, int)
|
202 |
+
Shape of array.
|
203 |
+
dtype : data-type
|
204 |
+
Data type of array.
|
205 |
+
order : {'C', 'F'}, optional
|
206 |
+
Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory.
|
207 |
+
align : int, optional
|
208 |
+
Boundary for alignment in bytes.
|
209 |
+
|
210 |
+
Returns
|
211 |
+
-------
|
212 |
+
numpy.ndarray
|
213 |
+
Aligned array.
|
214 |
+
|
215 |
+
"""
|
216 |
+
nbytes = np.prod(shape, dtype=np.int64) * np.dtype(dtype).itemsize
|
217 |
+
buffer = np.zeros(nbytes + align, dtype=np.uint8) # problematic on win64 ("maximum allowed dimension exceeded")
|
218 |
+
start_index = -buffer.ctypes.data % align
|
219 |
+
return buffer[start_index: start_index + nbytes].view(dtype).reshape(shape, order=order)
|
220 |
+
|
221 |
+
|
222 |
+
def ismatrix(m):
|
223 |
+
"""Check whether `m` is a 2D `numpy.ndarray` or `scipy.sparse` matrix.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
m : object
|
228 |
+
Object to check.
|
229 |
+
|
230 |
+
Returns
|
231 |
+
-------
|
232 |
+
bool
|
233 |
+
Is `m` a 2D `numpy.ndarray` or `scipy.sparse` matrix.
|
234 |
+
|
235 |
+
"""
|
236 |
+
return isinstance(m, np.ndarray) and m.ndim == 2 or scipy.sparse.issparse(m)
|
237 |
+
|
238 |
+
|
239 |
+
def any2sparse(vec, eps=1e-9):
|
240 |
+
"""Convert a numpy.ndarray or `scipy.sparse` vector into the Gensim bag-of-words format.
|
241 |
+
|
242 |
+
Parameters
|
243 |
+
----------
|
244 |
+
vec : {`numpy.ndarray`, `scipy.sparse`}
|
245 |
+
Input vector
|
246 |
+
eps : float, optional
|
247 |
+
Value used for threshold, all coordinates less than `eps` will not be presented in result.
|
248 |
+
|
249 |
+
Returns
|
250 |
+
-------
|
251 |
+
list of (int, float)
|
252 |
+
Vector in BoW format.
|
253 |
+
|
254 |
+
"""
|
255 |
+
if isinstance(vec, np.ndarray):
|
256 |
+
return dense2vec(vec, eps)
|
257 |
+
if scipy.sparse.issparse(vec):
|
258 |
+
return scipy2sparse(vec, eps)
|
259 |
+
return [(int(fid), float(fw)) for fid, fw in vec if np.abs(fw) > eps]
|
260 |
+
|
261 |
+
|
262 |
+
def scipy2scipy_clipped(matrix, topn, eps=1e-9):
|
263 |
+
"""Get the 'topn' elements of the greatest magnitude (absolute value) from a `scipy.sparse` vector or matrix.
|
264 |
+
|
265 |
+
Parameters
|
266 |
+
----------
|
267 |
+
matrix : `scipy.sparse`
|
268 |
+
Input vector or matrix (1D or 2D sparse array).
|
269 |
+
topn : int
|
270 |
+
Number of greatest elements, in absolute value, to return.
|
271 |
+
eps : float
|
272 |
+
Ignored.
|
273 |
+
|
274 |
+
Returns
|
275 |
+
-------
|
276 |
+
`scipy.sparse.csr.csr_matrix`
|
277 |
+
Clipped matrix.
|
278 |
+
|
279 |
+
"""
|
280 |
+
if not scipy.sparse.issparse(matrix):
|
281 |
+
raise ValueError("'%s' is not a scipy sparse vector." % matrix)
|
282 |
+
if topn <= 0:
|
283 |
+
return scipy.sparse.csr_matrix([])
|
284 |
+
# Return clipped sparse vector if input is a sparse vector.
|
285 |
+
if matrix.shape[0] == 1:
|
286 |
+
# use np.argpartition/argsort and only form tuples that are actually returned.
|
287 |
+
biggest = argsort(abs(matrix.data), topn, reverse=True)
|
288 |
+
indices, data = matrix.indices.take(biggest), matrix.data.take(biggest)
|
289 |
+
return scipy.sparse.csr_matrix((data, indices, [0, len(indices)]))
|
290 |
+
# Return clipped sparse matrix if input is a matrix, processing row by row.
|
291 |
+
else:
|
292 |
+
matrix_indices = []
|
293 |
+
matrix_data = []
|
294 |
+
matrix_indptr = [0]
|
295 |
+
# calling abs() on entire matrix once is faster than calling abs() iteratively for each row
|
296 |
+
matrix_abs = abs(matrix)
|
297 |
+
for i in range(matrix.shape[0]):
|
298 |
+
v = matrix.getrow(i)
|
299 |
+
v_abs = matrix_abs.getrow(i)
|
300 |
+
# Sort and clip each row vector first.
|
301 |
+
biggest = argsort(v_abs.data, topn, reverse=True)
|
302 |
+
indices, data = v.indices.take(biggest), v.data.take(biggest)
|
303 |
+
# Store the topn indices and values of each row vector.
|
304 |
+
matrix_data.append(data)
|
305 |
+
matrix_indices.append(indices)
|
306 |
+
matrix_indptr.append(matrix_indptr[-1] + min(len(indices), topn))
|
307 |
+
matrix_indices = np.concatenate(matrix_indices).ravel()
|
308 |
+
matrix_data = np.concatenate(matrix_data).ravel()
|
309 |
+
# Instantiate and return a sparse csr_matrix which preserves the order of indices/data.
|
310 |
+
return scipy.sparse.csr.csr_matrix(
|
311 |
+
(matrix_data, matrix_indices, matrix_indptr),
|
312 |
+
shape=(matrix.shape[0], np.max(matrix_indices) + 1)
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
def scipy2sparse(vec, eps=1e-9):
|
317 |
+
"""Convert a scipy.sparse vector into the Gensim bag-of-words format.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
----------
|
321 |
+
vec : `scipy.sparse`
|
322 |
+
Sparse vector.
|
323 |
+
|
324 |
+
eps : float, optional
|
325 |
+
Value used for threshold, all coordinates less than `eps` will not be presented in result.
|
326 |
+
|
327 |
+
Returns
|
328 |
+
-------
|
329 |
+
list of (int, float)
|
330 |
+
Vector in Gensim bag-of-words format.
|
331 |
+
|
332 |
+
"""
|
333 |
+
vec = vec.tocsr()
|
334 |
+
assert vec.shape[0] == 1
|
335 |
+
return [(int(pos), float(val)) for pos, val in zip(vec.indices, vec.data) if np.abs(val) > eps]
|
336 |
+
|
337 |
+
|
338 |
+
class Scipy2Corpus:
|
339 |
+
"""Convert a sequence of dense/sparse vectors into a streamed Gensim corpus object.
|
340 |
+
|
341 |
+
See Also
|
342 |
+
--------
|
343 |
+
:func:`~gensim.matutils.corpus2csc`
|
344 |
+
Convert corpus in Gensim format to `scipy.sparse.csc` matrix.
|
345 |
+
|
346 |
+
"""
|
347 |
+
def __init__(self, vecs):
|
348 |
+
"""
|
349 |
+
|
350 |
+
Parameters
|
351 |
+
----------
|
352 |
+
vecs : iterable of {`numpy.ndarray`, `scipy.sparse`}
|
353 |
+
Input vectors.
|
354 |
+
|
355 |
+
"""
|
356 |
+
self.vecs = vecs
|
357 |
+
|
358 |
+
def __iter__(self):
|
359 |
+
for vec in self.vecs:
|
360 |
+
if isinstance(vec, np.ndarray):
|
361 |
+
yield full2sparse(vec)
|
362 |
+
else:
|
363 |
+
yield scipy2sparse(vec)
|
364 |
+
|
365 |
+
def __len__(self):
|
366 |
+
return len(self.vecs)
|
367 |
+
|
368 |
+
|
369 |
+
def sparse2full(doc, length):
|
370 |
+
"""Convert a document in Gensim bag-of-words format into a dense numpy array.
|
371 |
+
|
372 |
+
Parameters
|
373 |
+
----------
|
374 |
+
doc : list of (int, number)
|
375 |
+
Document in BoW format.
|
376 |
+
length : int
|
377 |
+
Vector dimensionality. This cannot be inferred from the BoW, and you must supply it explicitly.
|
378 |
+
This is typically the vocabulary size or number of topics, depending on how you created `doc`.
|
379 |
+
|
380 |
+
Returns
|
381 |
+
-------
|
382 |
+
numpy.ndarray
|
383 |
+
Dense numpy vector for `doc`.
|
384 |
+
|
385 |
+
See Also
|
386 |
+
--------
|
387 |
+
:func:`~gensim.matutils.full2sparse`
|
388 |
+
Convert dense array to gensim bag-of-words format.
|
389 |
+
|
390 |
+
"""
|
391 |
+
result = np.zeros(length, dtype=np.float32) # fill with zeroes (default value)
|
392 |
+
# convert indices to int as numpy 1.12 no longer indexes by floats
|
393 |
+
doc = ((int(id_), float(val_)) for (id_, val_) in doc)
|
394 |
+
|
395 |
+
doc = dict(doc)
|
396 |
+
# overwrite some of the zeroes with explicit values
|
397 |
+
result[list(doc)] = list(doc.values())
|
398 |
+
return result
|
399 |
+
|
400 |
+
|
401 |
+
def full2sparse(vec, eps=1e-9):
|
402 |
+
"""Convert a dense numpy array into the Gensim bag-of-words format.
|
403 |
+
|
404 |
+
Parameters
|
405 |
+
----------
|
406 |
+
vec : numpy.ndarray
|
407 |
+
Dense input vector.
|
408 |
+
eps : float
|
409 |
+
Feature weight threshold value. Features with `abs(weight) < eps` are considered sparse and
|
410 |
+
won't be included in the BOW result.
|
411 |
+
|
412 |
+
Returns
|
413 |
+
-------
|
414 |
+
list of (int, float)
|
415 |
+
BoW format of `vec`, with near-zero values omitted (sparse vector).
|
416 |
+
|
417 |
+
See Also
|
418 |
+
--------
|
419 |
+
:func:`~gensim.matutils.sparse2full`
|
420 |
+
Convert a document in Gensim bag-of-words format into a dense numpy array.
|
421 |
+
|
422 |
+
"""
|
423 |
+
vec = np.asarray(vec, dtype=float)
|
424 |
+
nnz = np.nonzero(abs(vec) > eps)[0]
|
425 |
+
return list(zip(nnz, vec.take(nnz)))
|
426 |
+
|
427 |
+
|
428 |
+
dense2vec = full2sparse
|
429 |
+
|
430 |
+
|
431 |
+
def full2sparse_clipped(vec, topn, eps=1e-9):
|
432 |
+
"""Like :func:`~gensim.matutils.full2sparse`, but only return the `topn` elements of the greatest magnitude (abs).
|
433 |
+
|
434 |
+
This is more efficient that sorting a vector and then taking the greatest values, especially
|
435 |
+
where `len(vec) >> topn`.
|
436 |
+
|
437 |
+
Parameters
|
438 |
+
----------
|
439 |
+
vec : numpy.ndarray
|
440 |
+
Input dense vector
|
441 |
+
topn : int
|
442 |
+
Number of greatest (abs) elements that will be presented in result.
|
443 |
+
eps : float
|
444 |
+
Threshold value, if coordinate in `vec` < eps, this will not be presented in result.
|
445 |
+
|
446 |
+
Returns
|
447 |
+
-------
|
448 |
+
list of (int, float)
|
449 |
+
Clipped vector in BoW format.
|
450 |
+
|
451 |
+
See Also
|
452 |
+
--------
|
453 |
+
:func:`~gensim.matutils.full2sparse`
|
454 |
+
Convert dense array to gensim bag-of-words format.
|
455 |
+
|
456 |
+
"""
|
457 |
+
# use np.argpartition/argsort and only form tuples that are actually returned.
|
458 |
+
# this is about 40x faster than explicitly forming all 2-tuples to run sort() or heapq.nlargest() on.
|
459 |
+
if topn <= 0:
|
460 |
+
return []
|
461 |
+
vec = np.asarray(vec, dtype=float)
|
462 |
+
nnz = np.nonzero(abs(vec) > eps)[0]
|
463 |
+
biggest = nnz.take(argsort(abs(vec).take(nnz), topn, reverse=True))
|
464 |
+
return list(zip(biggest, vec.take(biggest)))
|
465 |
+
|
466 |
+
|
467 |
+
def corpus2dense(corpus, num_terms, num_docs=None, dtype=np.float32):
|
468 |
+
"""Convert corpus into a dense numpy 2D array, with documents as columns.
|
469 |
+
|
470 |
+
Parameters
|
471 |
+
----------
|
472 |
+
corpus : iterable of iterable of (int, number)
|
473 |
+
Input corpus in the Gensim bag-of-words format.
|
474 |
+
num_terms : int
|
475 |
+
Number of terms in the dictionary. X-axis of the resulting matrix.
|
476 |
+
num_docs : int, optional
|
477 |
+
Number of documents in the corpus. If provided, a slightly more memory-efficient code path is taken.
|
478 |
+
Y-axis of the resulting matrix.
|
479 |
+
dtype : data-type, optional
|
480 |
+
Data type of the output matrix.
|
481 |
+
|
482 |
+
Returns
|
483 |
+
-------
|
484 |
+
numpy.ndarray
|
485 |
+
Dense 2D array that presents `corpus`.
|
486 |
+
|
487 |
+
See Also
|
488 |
+
--------
|
489 |
+
:class:`~gensim.matutils.Dense2Corpus`
|
490 |
+
Convert dense matrix to Gensim corpus format.
|
491 |
+
|
492 |
+
"""
|
493 |
+
if num_docs is not None:
|
494 |
+
# we know the number of documents => don't bother column_stacking
|
495 |
+
docno, result = -1, np.empty((num_terms, num_docs), dtype=dtype)
|
496 |
+
for docno, doc in enumerate(corpus):
|
497 |
+
result[:, docno] = sparse2full(doc, num_terms)
|
498 |
+
assert docno + 1 == num_docs
|
499 |
+
else:
|
500 |
+
# The below used to be a generator, but NumPy deprecated generator as of 1.16 with:
|
501 |
+
# """
|
502 |
+
# FutureWarning: arrays to stack must be passed as a "sequence" type such as list or tuple.
|
503 |
+
# Support for non-sequence iterables such as generators is deprecated as of NumPy 1.16 and will raise an error
|
504 |
+
# in the future.
|
505 |
+
# """
|
506 |
+
result = np.column_stack([sparse2full(doc, num_terms) for doc in corpus])
|
507 |
+
return result.astype(dtype)
|
508 |
+
|
509 |
+
|
510 |
+
class Dense2Corpus:
|
511 |
+
"""Treat dense numpy array as a streamed Gensim corpus in the bag-of-words format.
|
512 |
+
|
513 |
+
Notes
|
514 |
+
-----
|
515 |
+
No data copy is made (changes to the underlying matrix imply changes in the streamed corpus).
|
516 |
+
|
517 |
+
See Also
|
518 |
+
--------
|
519 |
+
:func:`~gensim.matutils.corpus2dense`
|
520 |
+
Convert Gensim corpus to dense matrix.
|
521 |
+
:class:`~gensim.matutils.Sparse2Corpus`
|
522 |
+
Convert sparse matrix to Gensim corpus format.
|
523 |
+
|
524 |
+
"""
|
525 |
+
def __init__(self, dense, documents_columns=True):
|
526 |
+
"""
|
527 |
+
|
528 |
+
Parameters
|
529 |
+
----------
|
530 |
+
dense : numpy.ndarray
|
531 |
+
Corpus in dense format.
|
532 |
+
documents_columns : bool, optional
|
533 |
+
Documents in `dense` represented as columns, as opposed to rows?
|
534 |
+
|
535 |
+
"""
|
536 |
+
if documents_columns:
|
537 |
+
self.dense = dense.T
|
538 |
+
else:
|
539 |
+
self.dense = dense
|
540 |
+
|
541 |
+
def __iter__(self):
|
542 |
+
"""Iterate over the corpus.
|
543 |
+
|
544 |
+
Yields
|
545 |
+
------
|
546 |
+
list of (int, float)
|
547 |
+
Document in BoW format.
|
548 |
+
|
549 |
+
"""
|
550 |
+
for doc in self.dense:
|
551 |
+
yield full2sparse(doc.flat)
|
552 |
+
|
553 |
+
def __len__(self):
|
554 |
+
return len(self.dense)
|
555 |
+
|
556 |
+
|
557 |
+
class Sparse2Corpus:
|
558 |
+
"""Convert a matrix in scipy.sparse format into a streaming Gensim corpus.
|
559 |
+
|
560 |
+
See Also
|
561 |
+
--------
|
562 |
+
:func:`~gensim.matutils.corpus2csc`
|
563 |
+
Convert gensim corpus format to `scipy.sparse.csc` matrix
|
564 |
+
:class:`~gensim.matutils.Dense2Corpus`
|
565 |
+
Convert dense matrix to gensim corpus.
|
566 |
+
|
567 |
+
"""
|
568 |
+
def __init__(self, sparse, documents_columns=True):
|
569 |
+
"""
|
570 |
+
|
571 |
+
Parameters
|
572 |
+
----------
|
573 |
+
sparse : `scipy.sparse`
|
574 |
+
Corpus scipy sparse format
|
575 |
+
documents_columns : bool, optional
|
576 |
+
Documents will be column?
|
577 |
+
|
578 |
+
"""
|
579 |
+
if documents_columns:
|
580 |
+
self.sparse = sparse.tocsc()
|
581 |
+
else:
|
582 |
+
self.sparse = sparse.tocsr().T # make sure shape[1]=number of docs (needed in len())
|
583 |
+
|
584 |
+
def __iter__(self):
|
585 |
+
"""
|
586 |
+
|
587 |
+
Yields
|
588 |
+
------
|
589 |
+
list of (int, float)
|
590 |
+
Document in BoW format.
|
591 |
+
|
592 |
+
"""
|
593 |
+
for indprev, indnow in zip(self.sparse.indptr, self.sparse.indptr[1:]):
|
594 |
+
yield list(zip(self.sparse.indices[indprev:indnow], self.sparse.data[indprev:indnow]))
|
595 |
+
|
596 |
+
def __len__(self):
|
597 |
+
return self.sparse.shape[1]
|
598 |
+
|
599 |
+
def __getitem__(self, key):
|
600 |
+
"""
|
601 |
+
Retrieve a document vector or subset from the corpus by key.
|
602 |
+
|
603 |
+
Parameters
|
604 |
+
----------
|
605 |
+
key: int, ellipsis, slice, iterable object
|
606 |
+
Index of the document retrieve.
|
607 |
+
Less commonly, the key can also be a slice, ellipsis, or an iterable
|
608 |
+
to retrieve multiple documents.
|
609 |
+
|
610 |
+
Returns
|
611 |
+
-------
|
612 |
+
list of (int, number), Sparse2Corpus
|
613 |
+
Document in BoW format when `key` is an integer. Otherwise :class:`~gensim.matutils.Sparse2Corpus`.
|
614 |
+
"""
|
615 |
+
sparse = self.sparse
|
616 |
+
if isinstance(key, int):
|
617 |
+
iprev = self.sparse.indptr[key]
|
618 |
+
inow = self.sparse.indptr[key + 1]
|
619 |
+
return list(zip(sparse.indices[iprev:inow], sparse.data[iprev:inow]))
|
620 |
+
|
621 |
+
sparse = self.sparse.__getitem__((slice(None, None, None), key))
|
622 |
+
return Sparse2Corpus(sparse)
|
623 |
+
|
624 |
+
|
625 |
+
def veclen(vec):
|
626 |
+
"""Calculate L2 (euclidean) length of a vector.
|
627 |
+
|
628 |
+
Parameters
|
629 |
+
----------
|
630 |
+
vec : list of (int, number)
|
631 |
+
Input vector in sparse bag-of-words format.
|
632 |
+
|
633 |
+
Returns
|
634 |
+
-------
|
635 |
+
float
|
636 |
+
Length of `vec`.
|
637 |
+
|
638 |
+
"""
|
639 |
+
if len(vec) == 0:
|
640 |
+
return 0.0
|
641 |
+
length = 1.0 * math.sqrt(sum(val**2 for _, val in vec))
|
642 |
+
assert length > 0.0, "sparse documents must not contain any explicit zero entries"
|
643 |
+
return length
|
644 |
+
|
645 |
+
|
646 |
+
def ret_normalized_vec(vec, length):
|
647 |
+
"""Normalize a vector in L2 (Euclidean unit norm).
|
648 |
+
|
649 |
+
Parameters
|
650 |
+
----------
|
651 |
+
vec : list of (int, number)
|
652 |
+
Input vector in BoW format.
|
653 |
+
length : float
|
654 |
+
Length of vector
|
655 |
+
|
656 |
+
Returns
|
657 |
+
-------
|
658 |
+
list of (int, number)
|
659 |
+
L2-normalized vector in BoW format.
|
660 |
+
|
661 |
+
"""
|
662 |
+
if length != 1.0:
|
663 |
+
return [(termid, val / length) for termid, val in vec]
|
664 |
+
else:
|
665 |
+
return list(vec)
|
666 |
+
|
667 |
+
|
668 |
+
def ret_log_normalize_vec(vec, axis=1):
|
669 |
+
log_max = 100.0
|
670 |
+
if len(vec.shape) == 1:
|
671 |
+
max_val = np.max(vec)
|
672 |
+
log_shift = log_max - np.log(len(vec) + 1.0) - max_val
|
673 |
+
tot = np.sum(np.exp(vec + log_shift))
|
674 |
+
log_norm = np.log(tot) - log_shift
|
675 |
+
vec -= log_norm
|
676 |
+
else:
|
677 |
+
if axis == 1: # independently normalize each sample
|
678 |
+
max_val = np.max(vec, 1)
|
679 |
+
log_shift = log_max - np.log(vec.shape[1] + 1.0) - max_val
|
680 |
+
tot = np.sum(np.exp(vec + log_shift[:, np.newaxis]), 1)
|
681 |
+
log_norm = np.log(tot) - log_shift
|
682 |
+
vec = vec - log_norm[:, np.newaxis]
|
683 |
+
elif axis == 0: # normalize each feature
|
684 |
+
k = ret_log_normalize_vec(vec.T)
|
685 |
+
return k[0].T, k[1]
|
686 |
+
else:
|
687 |
+
raise ValueError("'%s' is not a supported axis" % axis)
|
688 |
+
return vec, log_norm
|
689 |
+
|
690 |
+
|
691 |
+
blas_nrm2 = blas('nrm2', np.array([], dtype=float))
|
692 |
+
blas_scal = blas('scal', np.array([], dtype=float))
|
693 |
+
|
694 |
+
|
695 |
+
def unitvec(vec, norm='l2', return_norm=False):
|
696 |
+
"""Scale a vector to unit length.
|
697 |
+
|
698 |
+
Parameters
|
699 |
+
----------
|
700 |
+
vec : {numpy.ndarray, scipy.sparse, list of (int, float)}
|
701 |
+
Input vector in any format
|
702 |
+
norm : {'l1', 'l2', 'unique'}, optional
|
703 |
+
Metric to normalize in.
|
704 |
+
return_norm : bool, optional
|
705 |
+
Return the length of vector `vec`, in addition to the normalized vector itself?
|
706 |
+
|
707 |
+
Returns
|
708 |
+
-------
|
709 |
+
numpy.ndarray, scipy.sparse, list of (int, float)}
|
710 |
+
Normalized vector in same format as `vec`.
|
711 |
+
float
|
712 |
+
Length of `vec` before normalization, if `return_norm` is set.
|
713 |
+
|
714 |
+
Notes
|
715 |
+
-----
|
716 |
+
Zero-vector will be unchanged.
|
717 |
+
|
718 |
+
"""
|
719 |
+
supported_norms = ('l1', 'l2', 'unique')
|
720 |
+
if norm not in supported_norms:
|
721 |
+
raise ValueError("'%s' is not a supported norm. Currently supported norms are %s." % (norm, supported_norms))
|
722 |
+
|
723 |
+
if scipy.sparse.issparse(vec):
|
724 |
+
vec = vec.tocsr()
|
725 |
+
if norm == 'l1':
|
726 |
+
veclen = np.sum(np.abs(vec.data))
|
727 |
+
if norm == 'l2':
|
728 |
+
veclen = np.sqrt(np.sum(vec.data ** 2))
|
729 |
+
if norm == 'unique':
|
730 |
+
veclen = vec.nnz
|
731 |
+
if veclen > 0.0:
|
732 |
+
if np.issubdtype(vec.dtype, np.integer):
|
733 |
+
vec = vec.astype(float)
|
734 |
+
vec /= veclen
|
735 |
+
if return_norm:
|
736 |
+
return vec, veclen
|
737 |
+
else:
|
738 |
+
return vec
|
739 |
+
else:
|
740 |
+
if return_norm:
|
741 |
+
return vec, 1.0
|
742 |
+
else:
|
743 |
+
return vec
|
744 |
+
|
745 |
+
if isinstance(vec, np.ndarray):
|
746 |
+
if norm == 'l1':
|
747 |
+
veclen = np.sum(np.abs(vec))
|
748 |
+
if norm == 'l2':
|
749 |
+
if vec.size == 0:
|
750 |
+
veclen = 0.0
|
751 |
+
else:
|
752 |
+
veclen = blas_nrm2(vec)
|
753 |
+
if norm == 'unique':
|
754 |
+
veclen = np.count_nonzero(vec)
|
755 |
+
if veclen > 0.0:
|
756 |
+
if np.issubdtype(vec.dtype, np.integer):
|
757 |
+
vec = vec.astype(float)
|
758 |
+
if return_norm:
|
759 |
+
return blas_scal(1.0 / veclen, vec).astype(vec.dtype), veclen
|
760 |
+
else:
|
761 |
+
return blas_scal(1.0 / veclen, vec).astype(vec.dtype)
|
762 |
+
else:
|
763 |
+
if return_norm:
|
764 |
+
return vec, 1.0
|
765 |
+
else:
|
766 |
+
return vec
|
767 |
+
|
768 |
+
try:
|
769 |
+
first = next(iter(vec)) # is there at least one element?
|
770 |
+
except StopIteration:
|
771 |
+
if return_norm:
|
772 |
+
return vec, 1.0
|
773 |
+
else:
|
774 |
+
return vec
|
775 |
+
|
776 |
+
if isinstance(first, (tuple, list)) and len(first) == 2: # gensim sparse format
|
777 |
+
if norm == 'l1':
|
778 |
+
length = float(sum(abs(val) for _, val in vec))
|
779 |
+
if norm == 'l2':
|
780 |
+
length = 1.0 * math.sqrt(sum(val ** 2 for _, val in vec))
|
781 |
+
if norm == 'unique':
|
782 |
+
length = 1.0 * len(vec)
|
783 |
+
assert length > 0.0, "sparse documents must not contain any explicit zero entries"
|
784 |
+
if return_norm:
|
785 |
+
return ret_normalized_vec(vec, length), length
|
786 |
+
else:
|
787 |
+
return ret_normalized_vec(vec, length)
|
788 |
+
else:
|
789 |
+
raise ValueError("unknown input type")
|
790 |
+
|
791 |
+
|
792 |
+
def cossim(vec1, vec2):
|
793 |
+
"""Get cosine similarity between two sparse vectors.
|
794 |
+
|
795 |
+
Cosine similarity is a number between `<-1.0, 1.0>`, higher means more similar.
|
796 |
+
|
797 |
+
Parameters
|
798 |
+
----------
|
799 |
+
vec1 : list of (int, float)
|
800 |
+
Vector in BoW format.
|
801 |
+
vec2 : list of (int, float)
|
802 |
+
Vector in BoW format.
|
803 |
+
|
804 |
+
Returns
|
805 |
+
-------
|
806 |
+
float
|
807 |
+
Cosine similarity between `vec1` and `vec2`.
|
808 |
+
|
809 |
+
"""
|
810 |
+
vec1, vec2 = dict(vec1), dict(vec2)
|
811 |
+
if not vec1 or not vec2:
|
812 |
+
return 0.0
|
813 |
+
vec1len = 1.0 * math.sqrt(sum(val * val for val in vec1.values()))
|
814 |
+
vec2len = 1.0 * math.sqrt(sum(val * val for val in vec2.values()))
|
815 |
+
assert vec1len > 0.0 and vec2len > 0.0, "sparse documents must not contain any explicit zero entries"
|
816 |
+
if len(vec2) < len(vec1):
|
817 |
+
vec1, vec2 = vec2, vec1 # swap references so that we iterate over the shorter vector
|
818 |
+
result = sum(value * vec2.get(index, 0.0) for index, value in vec1.items())
|
819 |
+
result /= vec1len * vec2len # rescale by vector lengths
|
820 |
+
return result
|
821 |
+
|
822 |
+
|
823 |
+
def isbow(vec):
|
824 |
+
"""Checks if a vector is in the sparse Gensim bag-of-words format.
|
825 |
+
|
826 |
+
Parameters
|
827 |
+
----------
|
828 |
+
vec : object
|
829 |
+
Object to check.
|
830 |
+
|
831 |
+
Returns
|
832 |
+
-------
|
833 |
+
bool
|
834 |
+
Is `vec` in BoW format.
|
835 |
+
|
836 |
+
"""
|
837 |
+
if scipy.sparse.issparse(vec):
|
838 |
+
vec = vec.todense().tolist()
|
839 |
+
try:
|
840 |
+
id_, val_ = vec[0] # checking first value to see if it is in bag of words format by unpacking
|
841 |
+
int(id_), float(val_)
|
842 |
+
except IndexError:
|
843 |
+
return True # this is to handle the empty input case
|
844 |
+
except (ValueError, TypeError):
|
845 |
+
return False
|
846 |
+
return True
|
847 |
+
|
848 |
+
|
849 |
+
def _convert_vec(vec1, vec2, num_features=None):
|
850 |
+
if scipy.sparse.issparse(vec1):
|
851 |
+
vec1 = vec1.toarray()
|
852 |
+
if scipy.sparse.issparse(vec2):
|
853 |
+
vec2 = vec2.toarray() # converted both the vectors to dense in case they were in sparse matrix
|
854 |
+
if isbow(vec1) and isbow(vec2): # if they are in bag of words format we make it dense
|
855 |
+
if num_features is not None: # if not None, make as large as the documents drawing from
|
856 |
+
dense1 = sparse2full(vec1, num_features)
|
857 |
+
dense2 = sparse2full(vec2, num_features)
|
858 |
+
return dense1, dense2
|
859 |
+
else:
|
860 |
+
max_len = max(len(vec1), len(vec2))
|
861 |
+
dense1 = sparse2full(vec1, max_len)
|
862 |
+
dense2 = sparse2full(vec2, max_len)
|
863 |
+
return dense1, dense2
|
864 |
+
else:
|
865 |
+
# this conversion is made because if it is not in bow format, it might be a list within a list after conversion
|
866 |
+
# the scipy implementation of Kullback fails in such a case so we pick up only the nested list.
|
867 |
+
if len(vec1) == 1:
|
868 |
+
vec1 = vec1[0]
|
869 |
+
if len(vec2) == 1:
|
870 |
+
vec2 = vec2[0]
|
871 |
+
return vec1, vec2
|
872 |
+
|
873 |
+
|
874 |
+
def kullback_leibler(vec1, vec2, num_features=None):
|
875 |
+
"""Calculate Kullback-Leibler distance between two probability distributions using `scipy.stats.entropy`.
|
876 |
+
|
877 |
+
Parameters
|
878 |
+
----------
|
879 |
+
vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
880 |
+
Distribution vector.
|
881 |
+
vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
882 |
+
Distribution vector.
|
883 |
+
num_features : int, optional
|
884 |
+
Number of features in the vectors.
|
885 |
+
|
886 |
+
Returns
|
887 |
+
-------
|
888 |
+
float
|
889 |
+
Kullback-Leibler distance between `vec1` and `vec2`.
|
890 |
+
Value in range [0, +∞) where values closer to 0 mean less distance (higher similarity).
|
891 |
+
|
892 |
+
"""
|
893 |
+
vec1, vec2 = _convert_vec(vec1, vec2, num_features=num_features)
|
894 |
+
return entropy(vec1, vec2)
|
895 |
+
|
896 |
+
|
897 |
+
def jensen_shannon(vec1, vec2, num_features=None):
|
898 |
+
"""Calculate Jensen-Shannon distance between two probability distributions using `scipy.stats.entropy`.
|
899 |
+
|
900 |
+
Parameters
|
901 |
+
----------
|
902 |
+
vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
903 |
+
Distribution vector.
|
904 |
+
vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
905 |
+
Distribution vector.
|
906 |
+
num_features : int, optional
|
907 |
+
Number of features in the vectors.
|
908 |
+
|
909 |
+
Returns
|
910 |
+
-------
|
911 |
+
float
|
912 |
+
Jensen-Shannon distance between `vec1` and `vec2`.
|
913 |
+
|
914 |
+
Notes
|
915 |
+
-----
|
916 |
+
This is a symmetric and finite "version" of :func:`gensim.matutils.kullback_leibler`.
|
917 |
+
|
918 |
+
"""
|
919 |
+
vec1, vec2 = _convert_vec(vec1, vec2, num_features=num_features)
|
920 |
+
avg_vec = 0.5 * (vec1 + vec2)
|
921 |
+
return 0.5 * (entropy(vec1, avg_vec) + entropy(vec2, avg_vec))
|
922 |
+
|
923 |
+
|
924 |
+
def hellinger(vec1, vec2):
|
925 |
+
"""Calculate Hellinger distance between two probability distributions.
|
926 |
+
|
927 |
+
Parameters
|
928 |
+
----------
|
929 |
+
vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
930 |
+
Distribution vector.
|
931 |
+
vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
932 |
+
Distribution vector.
|
933 |
+
|
934 |
+
Returns
|
935 |
+
-------
|
936 |
+
float
|
937 |
+
Hellinger distance between `vec1` and `vec2`.
|
938 |
+
Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity).
|
939 |
+
|
940 |
+
"""
|
941 |
+
if scipy.sparse.issparse(vec1):
|
942 |
+
vec1 = vec1.toarray()
|
943 |
+
if scipy.sparse.issparse(vec2):
|
944 |
+
vec2 = vec2.toarray()
|
945 |
+
if isbow(vec1) and isbow(vec2):
|
946 |
+
# if it is a BoW format, instead of converting to dense we use dictionaries to calculate appropriate distance
|
947 |
+
vec1, vec2 = dict(vec1), dict(vec2)
|
948 |
+
indices = set(list(vec1.keys()) + list(vec2.keys()))
|
949 |
+
sim = np.sqrt(
|
950 |
+
0.5 * sum((np.sqrt(vec1.get(index, 0.0)) - np.sqrt(vec2.get(index, 0.0)))**2 for index in indices)
|
951 |
+
)
|
952 |
+
return sim
|
953 |
+
else:
|
954 |
+
sim = np.sqrt(0.5 * ((np.sqrt(vec1) - np.sqrt(vec2))**2).sum())
|
955 |
+
return sim
|
956 |
+
|
957 |
+
|
958 |
+
def jaccard(vec1, vec2):
|
959 |
+
"""Calculate Jaccard distance between two vectors.
|
960 |
+
|
961 |
+
Parameters
|
962 |
+
----------
|
963 |
+
vec1 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
964 |
+
Distribution vector.
|
965 |
+
vec2 : {scipy.sparse, numpy.ndarray, list of (int, float)}
|
966 |
+
Distribution vector.
|
967 |
+
|
968 |
+
Returns
|
969 |
+
-------
|
970 |
+
float
|
971 |
+
Jaccard distance between `vec1` and `vec2`.
|
972 |
+
Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity).
|
973 |
+
|
974 |
+
"""
|
975 |
+
|
976 |
+
# converting from sparse for easier manipulation
|
977 |
+
if scipy.sparse.issparse(vec1):
|
978 |
+
vec1 = vec1.toarray()
|
979 |
+
if scipy.sparse.issparse(vec2):
|
980 |
+
vec2 = vec2.toarray()
|
981 |
+
if isbow(vec1) and isbow(vec2):
|
982 |
+
# if it's in bow format, we use the following definitions:
|
983 |
+
# union = sum of the 'weights' of both the bags
|
984 |
+
# intersection = lowest weight for a particular id; basically the number of common words or items
|
985 |
+
union = sum(weight for id_, weight in vec1) + sum(weight for id_, weight in vec2)
|
986 |
+
vec1, vec2 = dict(vec1), dict(vec2)
|
987 |
+
intersection = 0.0
|
988 |
+
for feature_id, feature_weight in vec1.items():
|
989 |
+
intersection += min(feature_weight, vec2.get(feature_id, 0.0))
|
990 |
+
return 1 - float(intersection) / float(union)
|
991 |
+
else:
|
992 |
+
# if it isn't in bag of words format, we can use sets to calculate intersection and union
|
993 |
+
if isinstance(vec1, np.ndarray):
|
994 |
+
vec1 = vec1.tolist()
|
995 |
+
if isinstance(vec2, np.ndarray):
|
996 |
+
vec2 = vec2.tolist()
|
997 |
+
vec1 = set(vec1)
|
998 |
+
vec2 = set(vec2)
|
999 |
+
intersection = vec1 & vec2
|
1000 |
+
union = vec1 | vec2
|
1001 |
+
return 1 - float(len(intersection)) / float(len(union))
|
1002 |
+
|
1003 |
+
|
1004 |
+
def jaccard_distance(set1, set2):
|
1005 |
+
"""Calculate Jaccard distance between two sets.
|
1006 |
+
|
1007 |
+
Parameters
|
1008 |
+
----------
|
1009 |
+
set1 : set
|
1010 |
+
Input set.
|
1011 |
+
set2 : set
|
1012 |
+
Input set.
|
1013 |
+
|
1014 |
+
Returns
|
1015 |
+
-------
|
1016 |
+
float
|
1017 |
+
Jaccard distance between `set1` and `set2`.
|
1018 |
+
Value in range `[0, 1]`, where 0 is min distance (max similarity) and 1 is max distance (min similarity).
|
1019 |
+
"""
|
1020 |
+
|
1021 |
+
union_cardinality = len(set1 | set2)
|
1022 |
+
if union_cardinality == 0: # Both sets are empty
|
1023 |
+
return 1.
|
1024 |
+
|
1025 |
+
return 1. - float(len(set1 & set2)) / float(union_cardinality)
|
1026 |
+
|
1027 |
+
|
1028 |
+
try:
|
1029 |
+
# try to load fast, cythonized code if possible
|
1030 |
+
from gensim._matutils import logsumexp, mean_absolute_difference, dirichlet_expectation
|
1031 |
+
|
1032 |
+
except ImportError:
|
1033 |
+
def logsumexp(x):
|
1034 |
+
"""Log of sum of exponentials.
|
1035 |
+
|
1036 |
+
Parameters
|
1037 |
+
----------
|
1038 |
+
x : numpy.ndarray
|
1039 |
+
Input 2d matrix.
|
1040 |
+
|
1041 |
+
Returns
|
1042 |
+
-------
|
1043 |
+
float
|
1044 |
+
log of sum of exponentials of elements in `x`.
|
1045 |
+
|
1046 |
+
Warnings
|
1047 |
+
--------
|
1048 |
+
For performance reasons, doesn't support NaNs or 1d, 3d, etc arrays like :func:`scipy.special.logsumexp`.
|
1049 |
+
|
1050 |
+
"""
|
1051 |
+
x_max = np.max(x)
|
1052 |
+
x = np.log(np.sum(np.exp(x - x_max)))
|
1053 |
+
x += x_max
|
1054 |
+
|
1055 |
+
return x
|
1056 |
+
|
1057 |
+
def mean_absolute_difference(a, b):
|
1058 |
+
"""Mean absolute difference between two arrays.
|
1059 |
+
|
1060 |
+
Parameters
|
1061 |
+
----------
|
1062 |
+
a : numpy.ndarray
|
1063 |
+
Input 1d array.
|
1064 |
+
b : numpy.ndarray
|
1065 |
+
Input 1d array.
|
1066 |
+
|
1067 |
+
Returns
|
1068 |
+
-------
|
1069 |
+
float
|
1070 |
+
mean(abs(a - b)).
|
1071 |
+
|
1072 |
+
"""
|
1073 |
+
return np.mean(np.abs(a - b))
|
1074 |
+
|
1075 |
+
def dirichlet_expectation(alpha):
|
1076 |
+
"""Expected value of log(theta) where theta is drawn from a Dirichlet distribution.
|
1077 |
+
|
1078 |
+
Parameters
|
1079 |
+
----------
|
1080 |
+
alpha : numpy.ndarray
|
1081 |
+
Dirichlet parameter 2d matrix or 1d vector, if 2d - each row is treated as a separate parameter vector.
|
1082 |
+
|
1083 |
+
Returns
|
1084 |
+
-------
|
1085 |
+
numpy.ndarray
|
1086 |
+
Log of expected values, dimension same as `alpha.ndim`.
|
1087 |
+
|
1088 |
+
"""
|
1089 |
+
if len(alpha.shape) == 1:
|
1090 |
+
result = psi(alpha) - psi(np.sum(alpha))
|
1091 |
+
else:
|
1092 |
+
result = psi(alpha) - psi(np.sum(alpha, 1))[:, np.newaxis]
|
1093 |
+
return result.astype(alpha.dtype, copy=False) # keep the same precision as input
|
1094 |
+
|
1095 |
+
|
1096 |
+
def qr_destroy(la):
|
1097 |
+
"""Get QR decomposition of `la[0]`.
|
1098 |
+
|
1099 |
+
Parameters
|
1100 |
+
----------
|
1101 |
+
la : list of numpy.ndarray
|
1102 |
+
Run QR decomposition on the first elements of `la`. Must not be empty.
|
1103 |
+
|
1104 |
+
Returns
|
1105 |
+
-------
|
1106 |
+
(numpy.ndarray, numpy.ndarray)
|
1107 |
+
Matrices :math:`Q` and :math:`R`.
|
1108 |
+
|
1109 |
+
Notes
|
1110 |
+
-----
|
1111 |
+
Using this function is less memory intense than calling `scipy.linalg.qr(la[0])`,
|
1112 |
+
because the memory used in `la[0]` is reclaimed earlier. This makes a difference when
|
1113 |
+
decomposing very large arrays, where every memory copy counts.
|
1114 |
+
|
1115 |
+
Warnings
|
1116 |
+
--------
|
1117 |
+
Content of `la` as well as `la[0]` gets destroyed in the process. Again, for memory-effiency reasons.
|
1118 |
+
|
1119 |
+
"""
|
1120 |
+
a = np.asfortranarray(la[0])
|
1121 |
+
del la[0], la # now `a` is the only reference to the input matrix
|
1122 |
+
m, n = a.shape
|
1123 |
+
# perform q, r = QR(a); code hacked out of scipy.linalg.qr
|
1124 |
+
logger.debug("computing QR of %s dense matrix", str(a.shape))
|
1125 |
+
geqrf, = get_lapack_funcs(('geqrf',), (a,))
|
1126 |
+
qr, tau, work, info = geqrf(a, lwork=-1, overwrite_a=True)
|
1127 |
+
qr, tau, work, info = geqrf(a, lwork=work[0], overwrite_a=True)
|
1128 |
+
del a # free up mem
|
1129 |
+
assert info >= 0
|
1130 |
+
r = np.triu(qr[:n, :n])
|
1131 |
+
if m < n: # rare case, #features < #topics
|
1132 |
+
qr = qr[:, :m] # retains fortran order
|
1133 |
+
gorgqr, = get_lapack_funcs(('orgqr',), (qr,))
|
1134 |
+
q, work, info = gorgqr(qr, tau, lwork=-1, overwrite_a=True)
|
1135 |
+
q, work, info = gorgqr(qr, tau, lwork=work[0], overwrite_a=True)
|
1136 |
+
assert info >= 0, "qr failed"
|
1137 |
+
assert q.flags.f_contiguous
|
1138 |
+
return q, r
|
1139 |
+
|
1140 |
+
|
1141 |
+
class MmWriter:
|
1142 |
+
"""Store a corpus in `Matrix Market format <https://math.nist.gov/MatrixMarket/formats.html>`_,
|
1143 |
+
using :class:`~gensim.corpora.mmcorpus.MmCorpus`.
|
1144 |
+
|
1145 |
+
Notes
|
1146 |
+
-----
|
1147 |
+
The output is written one document at a time, not the whole matrix at once (unlike e.g. `scipy.io.mmread`).
|
1148 |
+
This allows you to write corpora which are larger than the available RAM.
|
1149 |
+
|
1150 |
+
The output file is created in a single pass through the input corpus, so that the input can be
|
1151 |
+
a once-only stream (generator).
|
1152 |
+
|
1153 |
+
To achieve this, a fake MM header is written first, corpus statistics are collected
|
1154 |
+
during the pass (shape of the matrix, number of non-zeroes), followed by a seek back to the beginning of the file,
|
1155 |
+
rewriting the fake header with the final values.
|
1156 |
+
|
1157 |
+
"""
|
1158 |
+
HEADER_LINE = b'%%MatrixMarket matrix coordinate real general\n' # the only supported MM format
|
1159 |
+
|
1160 |
+
def __init__(self, fname):
|
1161 |
+
"""
|
1162 |
+
|
1163 |
+
Parameters
|
1164 |
+
----------
|
1165 |
+
fname : str
|
1166 |
+
Path to output file.
|
1167 |
+
|
1168 |
+
"""
|
1169 |
+
self.fname = fname
|
1170 |
+
if fname.endswith(".gz") or fname.endswith('.bz2'):
|
1171 |
+
raise NotImplementedError("compressed output not supported with MmWriter")
|
1172 |
+
self.fout = utils.open(self.fname, 'wb+') # open for both reading and writing
|
1173 |
+
self.headers_written = False
|
1174 |
+
|
1175 |
+
def write_headers(self, num_docs, num_terms, num_nnz):
|
1176 |
+
"""Write headers to file.
|
1177 |
+
|
1178 |
+
Parameters
|
1179 |
+
----------
|
1180 |
+
num_docs : int
|
1181 |
+
Number of documents in corpus.
|
1182 |
+
num_terms : int
|
1183 |
+
Number of term in corpus.
|
1184 |
+
num_nnz : int
|
1185 |
+
Number of non-zero elements in corpus.
|
1186 |
+
|
1187 |
+
"""
|
1188 |
+
self.fout.write(MmWriter.HEADER_LINE)
|
1189 |
+
|
1190 |
+
if num_nnz < 0:
|
1191 |
+
# we don't know the matrix shape/density yet, so only log a general line
|
1192 |
+
logger.info("saving sparse matrix to %s", self.fname)
|
1193 |
+
self.fout.write(utils.to_utf8(' ' * 50 + '\n')) # 48 digits must be enough for everybody
|
1194 |
+
else:
|
1195 |
+
logger.info(
|
1196 |
+
"saving sparse %sx%s matrix with %i non-zero entries to %s",
|
1197 |
+
num_docs, num_terms, num_nnz, self.fname
|
1198 |
+
)
|
1199 |
+
self.fout.write(utils.to_utf8('%s %s %s\n' % (num_docs, num_terms, num_nnz)))
|
1200 |
+
self.last_docno = -1
|
1201 |
+
self.headers_written = True
|
1202 |
+
|
1203 |
+
def fake_headers(self, num_docs, num_terms, num_nnz):
|
1204 |
+
"""Write "fake" headers to file, to be rewritten once we've scanned the entire corpus.
|
1205 |
+
|
1206 |
+
Parameters
|
1207 |
+
----------
|
1208 |
+
num_docs : int
|
1209 |
+
Number of documents in corpus.
|
1210 |
+
num_terms : int
|
1211 |
+
Number of term in corpus.
|
1212 |
+
num_nnz : int
|
1213 |
+
Number of non-zero elements in corpus.
|
1214 |
+
|
1215 |
+
"""
|
1216 |
+
stats = '%i %i %i' % (num_docs, num_terms, num_nnz)
|
1217 |
+
if len(stats) > 50:
|
1218 |
+
raise ValueError('Invalid stats: matrix too large!')
|
1219 |
+
self.fout.seek(len(MmWriter.HEADER_LINE))
|
1220 |
+
self.fout.write(utils.to_utf8(stats))
|
1221 |
+
|
1222 |
+
def write_vector(self, docno, vector):
|
1223 |
+
"""Write a single sparse vector to the file.
|
1224 |
+
|
1225 |
+
Parameters
|
1226 |
+
----------
|
1227 |
+
docno : int
|
1228 |
+
Number of document.
|
1229 |
+
vector : list of (int, number)
|
1230 |
+
Document in BoW format.
|
1231 |
+
|
1232 |
+
Returns
|
1233 |
+
-------
|
1234 |
+
(int, int)
|
1235 |
+
Max word index in vector and len of vector. If vector is empty, return (-1, 0).
|
1236 |
+
|
1237 |
+
"""
|
1238 |
+
assert self.headers_written, "must write Matrix Market file headers before writing data!"
|
1239 |
+
assert self.last_docno < docno, "documents %i and %i not in sequential order!" % (self.last_docno, docno)
|
1240 |
+
vector = sorted((i, w) for i, w in vector if abs(w) > 1e-12) # ignore near-zero entries
|
1241 |
+
for termid, weight in vector: # write term ids in sorted order
|
1242 |
+
# +1 because MM format starts counting from 1
|
1243 |
+
self.fout.write(utils.to_utf8("%i %i %s\n" % (docno + 1, termid + 1, weight)))
|
1244 |
+
self.last_docno = docno
|
1245 |
+
return (vector[-1][0], len(vector)) if vector else (-1, 0)
|
1246 |
+
|
1247 |
+
@staticmethod
|
1248 |
+
def write_corpus(fname, corpus, progress_cnt=1000, index=False, num_terms=None, metadata=False):
|
1249 |
+
"""Save the corpus to disk in `Matrix Market format <https://math.nist.gov/MatrixMarket/formats.html>`_.
|
1250 |
+
|
1251 |
+
Parameters
|
1252 |
+
----------
|
1253 |
+
fname : str
|
1254 |
+
Filename of the resulting file.
|
1255 |
+
corpus : iterable of list of (int, number)
|
1256 |
+
Corpus in streamed bag-of-words format.
|
1257 |
+
progress_cnt : int, optional
|
1258 |
+
Print progress for every `progress_cnt` number of documents.
|
1259 |
+
index : bool, optional
|
1260 |
+
Return offsets?
|
1261 |
+
num_terms : int, optional
|
1262 |
+
Number of terms in the corpus. If provided, the `corpus.num_terms` attribute (if any) will be ignored.
|
1263 |
+
metadata : bool, optional
|
1264 |
+
Generate a metadata file?
|
1265 |
+
|
1266 |
+
Returns
|
1267 |
+
-------
|
1268 |
+
offsets : {list of int, None}
|
1269 |
+
List of offsets (if index=True) or nothing.
|
1270 |
+
|
1271 |
+
Notes
|
1272 |
+
-----
|
1273 |
+
Documents are processed one at a time, so the whole corpus is allowed to be larger than the available RAM.
|
1274 |
+
|
1275 |
+
See Also
|
1276 |
+
--------
|
1277 |
+
:func:`gensim.corpora.mmcorpus.MmCorpus.save_corpus`
|
1278 |
+
Save corpus to disk.
|
1279 |
+
|
1280 |
+
"""
|
1281 |
+
mw = MmWriter(fname)
|
1282 |
+
|
1283 |
+
# write empty headers to the file (with enough space to be overwritten later)
|
1284 |
+
mw.write_headers(-1, -1, -1) # will print 50 spaces followed by newline on the stats line
|
1285 |
+
|
1286 |
+
# calculate necessary header info (nnz elements, num terms, num docs) while writing out vectors
|
1287 |
+
_num_terms, num_nnz = 0, 0
|
1288 |
+
docno, poslast = -1, -1
|
1289 |
+
offsets = []
|
1290 |
+
if hasattr(corpus, 'metadata'):
|
1291 |
+
orig_metadata = corpus.metadata
|
1292 |
+
corpus.metadata = metadata
|
1293 |
+
if metadata:
|
1294 |
+
docno2metadata = {}
|
1295 |
+
else:
|
1296 |
+
metadata = False
|
1297 |
+
for docno, doc in enumerate(corpus):
|
1298 |
+
if metadata:
|
1299 |
+
bow, data = doc
|
1300 |
+
docno2metadata[docno] = data
|
1301 |
+
else:
|
1302 |
+
bow = doc
|
1303 |
+
if docno % progress_cnt == 0:
|
1304 |
+
logger.info("PROGRESS: saving document #%i", docno)
|
1305 |
+
if index:
|
1306 |
+
posnow = mw.fout.tell()
|
1307 |
+
if posnow == poslast:
|
1308 |
+
offsets[-1] = -1
|
1309 |
+
offsets.append(posnow)
|
1310 |
+
poslast = posnow
|
1311 |
+
max_id, veclen = mw.write_vector(docno, bow)
|
1312 |
+
_num_terms = max(_num_terms, 1 + max_id)
|
1313 |
+
num_nnz += veclen
|
1314 |
+
if metadata:
|
1315 |
+
utils.pickle(docno2metadata, fname + '.metadata.cpickle')
|
1316 |
+
corpus.metadata = orig_metadata
|
1317 |
+
|
1318 |
+
num_docs = docno + 1
|
1319 |
+
num_terms = num_terms or _num_terms
|
1320 |
+
|
1321 |
+
if num_docs * num_terms != 0:
|
1322 |
+
logger.info(
|
1323 |
+
"saved %ix%i matrix, density=%.3f%% (%i/%i)",
|
1324 |
+
num_docs, num_terms, 100.0 * num_nnz / (num_docs * num_terms), num_nnz, num_docs * num_terms
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
# now write proper headers, by seeking and overwriting the spaces written earlier
|
1328 |
+
mw.fake_headers(num_docs, num_terms, num_nnz)
|
1329 |
+
|
1330 |
+
mw.close()
|
1331 |
+
if index:
|
1332 |
+
return offsets
|
1333 |
+
|
1334 |
+
def __del__(self):
|
1335 |
+
"""Close `self.fout` file. Alias for :meth:`~gensim.matutils.MmWriter.close`.
|
1336 |
+
|
1337 |
+
Warnings
|
1338 |
+
--------
|
1339 |
+
Closing the file explicitly via the close() method is preferred and safer.
|
1340 |
+
|
1341 |
+
"""
|
1342 |
+
self.close() # does nothing if called twice (on an already closed file), so no worries
|
1343 |
+
|
1344 |
+
def close(self):
|
1345 |
+
"""Close `self.fout` file."""
|
1346 |
+
logger.debug("closing %s", self.fname)
|
1347 |
+
if hasattr(self, 'fout'):
|
1348 |
+
self.fout.close()
|
1349 |
+
|
1350 |
+
|
1351 |
+
try:
|
1352 |
+
from gensim.corpora._mmreader import MmReader # noqa: F401
|
1353 |
+
except ImportError:
|
1354 |
+
raise utils.NO_CYTHON
|