Spaces:
Sleeping
Sleeping
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
int const threadsPerBlock = sizeof(unsigned long long) * 8; | |
__device__ inline float devIoU(float const * const a, float const * const b) { | |
if (a[5] != b[5]) { | |
return 0.0; | |
} | |
float left = max(a[0], b[0]), right = min(a[2], b[2]); | |
float top = max(a[1], b[1]), bottom = min(a[3], b[3]); | |
float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f); | |
float interS = width * height; | |
float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); | |
float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); | |
return interS / (Sa + Sb - interS); | |
} | |
__global__ void ml_nms_kernel(const int n_boxes, const float nms_overlap_thresh, | |
const float *dev_boxes, unsigned long long *dev_mask) { | |
const int row_start = blockIdx.y; | |
const int col_start = blockIdx.x; | |
// if (row_start > col_start) return; | |
const int row_size = | |
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); | |
const int col_size = | |
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); | |
__shared__ float block_boxes[threadsPerBlock * 6]; | |
if (threadIdx.x < col_size) { | |
block_boxes[threadIdx.x * 6 + 0] = | |
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 0]; | |
block_boxes[threadIdx.x * 6 + 1] = | |
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 1]; | |
block_boxes[threadIdx.x * 6 + 2] = | |
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 2]; | |
block_boxes[threadIdx.x * 6 + 3] = | |
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 3]; | |
block_boxes[threadIdx.x * 6 + 4] = | |
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 4]; | |
block_boxes[threadIdx.x * 6 + 5] = | |
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 6 + 5]; | |
} | |
__syncthreads(); | |
if (threadIdx.x < row_size) { | |
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; | |
const float *cur_box = dev_boxes + cur_box_idx * 6; | |
int i = 0; | |
unsigned long long t = 0; | |
int start = 0; | |
if (row_start == col_start) { | |
start = threadIdx.x + 1; | |
} | |
for (i = start; i < col_size; i++) { | |
if (devIoU(cur_box, block_boxes + i * 6) > nms_overlap_thresh) { | |
t |= 1ULL << i; | |
} | |
} | |
const int col_blocks = THCCeilDiv(n_boxes, threadsPerBlock); | |
dev_mask[cur_box_idx * col_blocks + col_start] = t; | |
} | |
} | |
// boxes is a N x 6 tensor | |
at::Tensor ml_nms_cuda(const at::Tensor boxes, float nms_overlap_thresh) { | |
using scalar_t = float; | |
AT_ASSERTM(boxes.device().is_cuda(), "boxes must be a CUDA tensor"); | |
auto scores = boxes.select(1, 4); | |
auto order_t = std::get<1>(scores.sort(0, /* descending=*/true)); | |
auto boxes_sorted = boxes.index_select(0, order_t); | |
int boxes_num = boxes.size(0); | |
const int col_blocks = THCCeilDiv(boxes_num, threadsPerBlock); | |
scalar_t* boxes_dev = boxes_sorted.data_ptr<scalar_t>(); | |
THCState *state = at::globalContext().lazyInitCUDA(); // TODO replace with getTHCState | |
unsigned long long* mask_dev = NULL; | |
//THCudaCheck(THCudaMalloc(state, (void**) &mask_dev, | |
// boxes_num * col_blocks * sizeof(unsigned long long))); | |
mask_dev = (unsigned long long*) THCudaMalloc(state, boxes_num * col_blocks * sizeof(unsigned long long)); | |
dim3 blocks(THCCeilDiv(boxes_num, threadsPerBlock), | |
THCCeilDiv(boxes_num, threadsPerBlock)); | |
dim3 threads(threadsPerBlock); | |
ml_nms_kernel<<<blocks, threads>>>(boxes_num, | |
nms_overlap_thresh, | |
boxes_dev, | |
mask_dev); | |
std::vector<unsigned long long> mask_host(boxes_num * col_blocks); | |
THCudaCheck(cudaMemcpy(&mask_host[0], | |
mask_dev, | |
sizeof(unsigned long long) * boxes_num * col_blocks, | |
cudaMemcpyDeviceToHost)); | |
std::vector<unsigned long long> remv(col_blocks); | |
memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); | |
at::Tensor keep = at::empty({boxes_num}, boxes.options().dtype(at::kLong).device(at::kCPU)); | |
int64_t* keep_out = keep.data_ptr<int64_t>(); | |
int num_to_keep = 0; | |
for (int i = 0; i < boxes_num; i++) { | |
int nblock = i / threadsPerBlock; | |
int inblock = i % threadsPerBlock; | |
if (!(remv[nblock] & (1ULL << inblock))) { | |
keep_out[num_to_keep++] = i; | |
unsigned long long *p = &mask_host[0] + i * col_blocks; | |
for (int j = nblock; j < col_blocks; j++) { | |
remv[j] |= p[j]; | |
} | |
} | |
} | |
THCudaFree(state, mask_dev); | |
// TODO improve this part | |
return std::get<0>(order_t.index({ | |
keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep).to( | |
order_t.device(), keep.scalar_type()) | |
}).sort(0, false)); | |
} | |