Spaces:
Sleeping
Sleeping
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
template <typename scalar_t> | |
at::Tensor nms_cpu_kernel(const at::Tensor& dets, | |
const at::Tensor& scores, | |
const float threshold) { | |
AT_ASSERTM(!dets.device().is_cuda(), "dets must be a CPU tensor"); | |
AT_ASSERTM(!scores.device().is_cuda(), "scores must be a CPU tensor"); | |
AT_ASSERTM(dets.type() == scores.type(), "dets should have the same type as scores"); | |
if (dets.numel() == 0) { | |
return at::empty({0}, dets.options().dtype(at::kLong).device(at::kCPU)); | |
} | |
auto x1_t = dets.select(1, 0).contiguous(); | |
auto y1_t = dets.select(1, 1).contiguous(); | |
auto x2_t = dets.select(1, 2).contiguous(); | |
auto y2_t = dets.select(1, 3).contiguous(); | |
at::Tensor areas_t = (x2_t - x1_t + 1) * (y2_t - y1_t + 1); | |
auto order_t = std::get<1>(scores.sort(0, /* descending=*/true)); | |
auto ndets = dets.size(0); | |
at::Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte).device(at::kCPU)); | |
auto suppressed = suppressed_t.data_ptr<uint8_t>(); | |
auto order = order_t.data_ptr<int64_t>(); | |
auto x1 = x1_t.data_ptr<scalar_t>(); | |
auto y1 = y1_t.data_ptr<scalar_t>(); | |
auto x2 = x2_t.data_ptr<scalar_t>(); | |
auto y2 = y2_t.data_ptr<scalar_t>(); | |
auto areas = areas_t.data_ptr<scalar_t>(); | |
for (int64_t _i = 0; _i < ndets; _i++) { | |
auto i = order[_i]; | |
if (suppressed[i] == 1) | |
continue; | |
auto ix1 = x1[i]; | |
auto iy1 = y1[i]; | |
auto ix2 = x2[i]; | |
auto iy2 = y2[i]; | |
auto iarea = areas[i]; | |
for (int64_t _j = _i + 1; _j < ndets; _j++) { | |
auto j = order[_j]; | |
if (suppressed[j] == 1) | |
continue; | |
auto xx1 = std::max(ix1, x1[j]); | |
auto yy1 = std::max(iy1, y1[j]); | |
auto xx2 = std::min(ix2, x2[j]); | |
auto yy2 = std::min(iy2, y2[j]); | |
auto w = std::max(static_cast<scalar_t>(0), xx2 - xx1 + 1); | |
auto h = std::max(static_cast<scalar_t>(0), yy2 - yy1 + 1); | |
auto inter = w * h; | |
auto ovr = inter / (iarea + areas[j] - inter); | |
if (ovr >= threshold) | |
suppressed[j] = 1; | |
} | |
} | |
return at::nonzero(suppressed_t == 0).squeeze(1); | |
} | |
at::Tensor nms_cpu(const at::Tensor& dets, | |
const at::Tensor& scores, | |
const float threshold) { | |
at::Tensor result; | |
AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "nms", [&] { | |
result = nms_cpu_kernel<scalar_t>(dets, scores, threshold); | |
}); | |
return result; | |
} | |