File size: 24,485 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import bisect
import copy
import logging
import os

import torch.utils.data
import torch.distributed as dist
from maskrcnn_benchmark.utils.comm import get_world_size
from maskrcnn_benchmark.utils.imports import import_file

from . import datasets as D
from . import samplers

from .collate_batch import BatchCollator, BBoxAugCollator
from .transforms import build_transforms

from transformers import AutoTokenizer
from .datasets.duplicate_dataset import create_duplicate_dataset


def build_dataset(cfg, dataset_list, transforms, dataset_catalog, is_train=True, class_concat=False, extra_args={}):
    """

    Arguments:

        dataset_list (list[str]): Contains the names of the datasets, i.e.,

            coco_2014_trian, coco_2014_val, etc

        transforms (callable): transforms to apply to each (image, target) sample

        dataset_catalog (DatasetCatalog): contains the information on how to

            construct a dataset.

        is_train (bool): whether to setup the dataset for training or testing

    """
    if not isinstance(dataset_list, (list, tuple)):
        raise RuntimeError("dataset_list should be a list of strings, got {}".format(dataset_list))
    datasets = []
    num_category = 1
    for dataset_id, dataset_name in enumerate(dataset_list, 1):
        if is_train:
            dataset_name = dataset_name + cfg.DATASETS.TRAIN_DATASETNAME_SUFFIX
        else:
            dataset_name = dataset_name + cfg.DATASETS.TEST_DATASETNAME_SUFFIX
        data = dataset_catalog.get(dataset_name)
        factory = getattr(D, data["factory"])
        args = data["args"]
        # for COCODataset, we want to remove images without annotations
        # during training
        if data["factory"] == "COCODataset":
            args["remove_images_without_annotations"] = is_train

        if data["factory"] == "PascalVOCDataset":
            args["use_difficult"] = not is_train
        if data["factory"] in ["VGTSVDataset", "CocoDetectionTSV", "ODTSVDataset"]:
            args["extra_fields"] = ["class"]
            if cfg.MODEL.MASK_ON:
                args["extra_fields"].append("mask")

        if data["factory"] in [
            "CocoGrounding",
            "CocoDetectionTSV",
            "CaptionTSV",
            "MixedDataset",
            "FlickrDataset",
            "RefExpDataset",
            "GQADataset",
            "PseudoData",
            "PhrasecutDetection",
        ]:
            # args["return_masks"] = False
            args["return_masks"] = cfg.MODEL.MASK_ON
            args["return_tokens"] = True
            args["max_num_labels"] = cfg.TEST.MDETR_STYLE_AGGREGATE_CLASS_NUM
            args["max_query_len"] = cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN

        args["transforms"] = transforms
        args.update(extra_args)

        if "flickr30k_train" in dataset_name: #dataset_name == "flickr30k_train":
            copy = cfg.DATASETS.FLICKR_COPY
        elif "mixed_train" in dataset_name: #dataset_name in ["mixed_train", "mixed_train_no_coco"]:
            copy = cfg.DATASETS.MIXED_COPY
        elif dataset_name in ["COCO_odinw_train_8copy_dt_train", "coco_dt_train", "coco_grounding_train"]:
            copy = cfg.DATASETS.COCO_COPY
        elif dataset_name in ["LVIS_odinw_train_8copy_dt_train", "lvisv1_dt_train", "lvis_grounding_train"]:
            copy = cfg.DATASETS.LVIS_COPY
        elif dataset_name in ["object365_odinw_2copy_dt_train", "object365_dt_train"]:
            copy = cfg.DATASETS.OBJECT365_COPY
        elif dataset_name == "vg_odinw_clipped_8copy_dt_train":
            copy = cfg.DATASETS.VG_COPY
        elif dataset_name == "vg_vgoi6_clipped_8copy_dt_train":
            copy = cfg.DATASETS.VG_COPY
        elif dataset_name == "imagenetod_train_odinw_2copy_dt":
            copy = cfg.DATASETS.IN_COPY
        elif dataset_name == "oi_train_odinw_dt":
            copy = cfg.DATASETS.OI_COPY
        elif "refcoco" in dataset_name:
            copy = cfg.DATASETS.REFCOCO_COPY
        elif is_train:
            copy = cfg.DATASETS.GENERAL_COPY
        elif not is_train:
            copy = cfg.DATASETS.GENERAL_COPY_TEST
        else:
            copy = -1  # do not ever copy test

        if copy != -1 and copy != 1:
            new_factory = create_duplicate_dataset(factory)
            dataset = new_factory(copy=copy, **args)
        else:
            # make dataset from factory
            dataset = factory(**args)
        
        print(dataset_name, "has the {} data points".format(len(dataset)), data["factory"])

        if class_concat:
            category = list(dataset.contiguous_category_id_to_json_id.values())
            dataset.contiguous_category_id_to_json_id = {}
            dataset.json_category_id_to_contiguous_id = {}
            for id, cat in enumerate(category, start=num_category):
                dataset.json_category_id_to_contiguous_id[cat] = id
                dataset.contiguous_category_id_to_json_id[id] = cat
            num_category += len(category)
            print("Found {} #category after group {}, concating ...".format(num_category, dataset_id))
        datasets.append(dataset)

    # for testing, return a list of datasets
    if not is_train:
        return datasets

    # for training, concatenate all datasets into a single one
    dataset = datasets[0]
    if len(datasets) > 1:
        dataset = D.ConcatDataset(datasets)

    return [dataset]


def build_dataset_by_group(

    dataset_list, transforms, dataset_catalog, is_train=True, class_by_group=True, class_concat=False, extra_args={}

):
    """

    Arguments:

        dataset_list (list[str]): Contains the names of the datasets, i.e.,

            coco_2014_trian, coco_2014_val, etc

        transforms (callable): transforms to apply to each (image, target) sample

        dataset_catalog (DatasetCatalog): contains the information on how to

            construct a dataset.

        is_train (bool): whether to setup the dataset for training or testing

    """
    if not isinstance(dataset_list, (list, tuple)):
        raise RuntimeError("dataset_list should be a list of strings, got {}".format(dataset_list))

    num_category = 1
    grouped_datasets = []
    for group_id, group in enumerate(dataset_list, 1):
        datasets = []
        for dataset_name in group:
            data = dataset_catalog.get(dataset_name)
            factory = getattr(D, data["factory"])
            args = data["args"]
            # for COCODataset, we want to remove images without annotations
            # during training
            if data["factory"] == "COCODataset":
                args["remove_images_without_annotations"] = is_train
            if data["factory"] == "PascalVOCDataset":
                args["use_difficult"] = not is_train
            args["transforms"] = transforms
            args.update(extra_args)
            # make dataset from factory
            dataset = factory(**args)

            # check if dataset is grouped by task, assume one class per task
            if class_by_group and data["factory"] != "Background":
                category = dataset.contiguous_category_id_to_json_id[1]
                del dataset.contiguous_category_id_to_json_id[1]
                dataset.json_category_id_to_contiguous_id[category] = group_id
                dataset.contiguous_category_id_to_json_id[group_id] = category

            datasets.append(dataset)

        if class_concat:
            for dataset in datasets:
                category = list(dataset.contiguous_category_id_to_json_id.values())
                dataset.contiguous_category_id_to_json_id = {}
                dataset.json_category_id_to_contiguous_id = {}
                for id, cat in enumerate(category, start=num_category):
                    dataset.json_category_id_to_contiguous_id[cat] = id
                    dataset.contiguous_category_id_to_json_id[id] = cat
            num_category += len(category)
            print("Found {} #category after group {}, concating ...".format(num_category, group_id))

        if is_train:
            datasets = D.ConcatDataset(datasets)

        grouped_datasets.append(datasets)

    # for testing, return a list of datasets
    if not is_train:
        datasets = [dataset for group in grouped_datasets for dataset in group]
        return datasets
    if class_concat:
        grouped_datasets = D.ConcatDataset(grouped_datasets)
        return [grouped_datasets]

    # for training, concatenate all datasets into a single one
    return grouped_datasets


def make_data_sampler(dataset, shuffle, distributed, num_replicas=None, rank=None, use_random_seed=True):
    if distributed:
        return samplers.DistributedSampler(
            dataset, shuffle=shuffle, num_replicas=num_replicas, rank=rank, use_random=use_random_seed
        )
    if shuffle:
        sampler = torch.utils.data.sampler.RandomSampler(dataset)
    else:
        sampler = torch.utils.data.sampler.SequentialSampler(dataset)
    return sampler


def _quantize(x, bins):
    bins = copy.copy(bins)
    bins = sorted(bins)
    quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
    return quantized


def _compute_aspect_ratios(dataset):
    aspect_ratios = []
    for i in range(len(dataset)):
        img_info = dataset.get_img_info(i)
        aspect_ratio = float(img_info["height"]) / float(img_info["width"])
        aspect_ratios.append(aspect_ratio)
    return aspect_ratios


def make_batch_data_sampler(

    dataset, sampler, aspect_grouping, images_per_batch, num_iters=None, start_iter=0, drop_last=False

):
    if aspect_grouping:
        if not isinstance(aspect_grouping, (list, tuple)):
            aspect_grouping = [aspect_grouping]
        aspect_ratios = _compute_aspect_ratios(dataset)
        group_ids = _quantize(aspect_ratios, aspect_grouping)
        batch_sampler = samplers.GroupedBatchSampler(sampler, group_ids, images_per_batch, drop_uneven=drop_last)
    else:
        batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, images_per_batch, drop_last=drop_last)
    if num_iters is not None:
        batch_sampler = samplers.IterationBasedBatchSampler(batch_sampler, num_iters, start_iter)
    return batch_sampler


def make_data_loader(cfg, is_train=True, is_distributed=False, num_replicas=None, rank=None, start_iter=0):
    num_gpus = num_replicas or get_world_size()

    if is_train:
        images_per_batch = cfg.SOLVER.IMS_PER_BATCH
        assert images_per_batch % num_gpus == 0, "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number "
        "of GPUs ({}) used.".format(images_per_batch, num_gpus)
        images_per_gpu = images_per_batch // num_gpus
        shuffle = True
        num_iters = cfg.SOLVER.MAX_ITER
    else:
        images_per_batch = cfg.TEST.IMS_PER_BATCH
        assert images_per_batch % num_gpus == 0, "TEST.IMS_PER_BATCH ({}) must be divisible by the number "
        "of GPUs ({}) used.".format(images_per_batch, num_gpus)
        images_per_gpu = images_per_batch // num_gpus
        shuffle = False if not is_distributed else True
        num_iters = None
        start_iter = 0

    if images_per_gpu > 1:
        logger = logging.getLogger(__name__)
        logger.warning(
            "When using more than one image per GPU you may encounter "
            "an out-of-memory (OOM) error if your GPU does not have "
            "sufficient memory. If this happens, you can reduce "
            "SOLVER.IMS_PER_BATCH (for training) or "
            "TEST.IMS_PER_BATCH (for inference). For training, you must "
            "also adjust the learning rate and schedule length according "
            "to the linear scaling rule. See for example: "
            "https://github.com/facebookresearch/Detectron/blob/master/configs/getting_started/tutorial_1gpu_e2e_faster_rcnn_R-50-FPN.yaml#L14"
        )

    # group images which have similar aspect ratio. In this case, we only
    # group in two cases: those with width / height > 1, and the other way around,
    # but the code supports more general grouping strategy
    aspect_grouping = [1] if cfg.DATALOADER.ASPECT_RATIO_GROUPING else []

    paths_catalog = import_file("maskrcnn_benchmark.config.paths_catalog", cfg.PATHS_CATALOG, True)

    DatasetCatalog = paths_catalog.DatasetCatalog
    if len(cfg.DATASETS.REGISTER) > 0:
        for new_dataset in cfg.DATASETS.REGISTER:
            # img_dir = cfg.DATASETS.REGISTER[new_dataset]["img_dir"]
            # if "ann_file" in cfg.DATASETS.REGISTER[new_dataset]:
            #     ann_file = cfg.DATASETS.REGISTER[new_dataset]["ann_file"]
            # else:
            #     ann_file = None
            attrs = dict(cfg.DATASETS.REGISTER[new_dataset])
            if is_train:
                new_dataset = new_dataset + cfg.DATASETS.TRAIN_DATASETNAME_SUFFIX
            else:
                new_dataset = new_dataset + cfg.DATASETS.TEST_DATASETNAME_SUFFIX
            DatasetCatalog.set(new_dataset, attrs)

    dataset_list = cfg.DATASETS.TRAIN if is_train else cfg.DATASETS.TEST

    # Haotian: expand bing dataset
    if "bing_caption_train" in dataset_list and len(cfg.DATASETS.BING_INDEX_LIST) > 0:
        dataset_list = list(dataset_list)
        dataset_list.remove("bing_caption_train")
        for bing_index in cfg.DATASETS.BING_INDEX_LIST:
            dataset_list.insert(len(dataset_list), "bing_caption_{}_train".format(bing_index))
        dataset_list = tuple(dataset_list)

    if "bing_caption_train_no_coco" in dataset_list and len(cfg.DATASETS.BING_INDEX_LIST) > 0:
        dataset_list = list(dataset_list)
        dataset_list.remove("bing_caption_train_no_coco")
        for bing_index in cfg.DATASETS.BING_INDEX_LIST:
            dataset_list.insert(len(dataset_list), "bing_caption_{}_train_no_coco".format(bing_index))
        dataset_list = tuple(dataset_list)

    print("The combined datasets are: {}.".format(dataset_list))

    transforms = None if not is_train and cfg.TEST.USE_MULTISCALE else build_transforms(cfg, is_train)

    extra_args = {}
    if is_train and cfg.DATASETS.USE_CROWD:
        extra_args["ignore_crowd"] = False
    if is_train and cfg.DATASETS.MAX_BOX > 0:
        extra_args["max_box"] = cfg.DATASETS.MAX_BOX
    if is_train and cfg.DATASETS.FEW_SHOT > 0:
        extra_args["few_shot"] = cfg.DATASETS.FEW_SHOT
    if is_train and cfg.DATASETS.SHUFFLE_SEED != 0:
        extra_args["shuffle_seed"] = cfg.DATASETS.SHUFFLE_SEED
    if is_train and cfg.AUGMENT.MOSAIC_PROB > 0:
        extra_args["mosaic_prob"] = cfg.AUGMENT.MOSAIC_PROB
        extra_args["mosaic_shift"] = cfg.AUGMENT.MOSAIC_SHIFT
        extra_args["mosaic_size"] = cfg.AUGMENT.MOSAIC_SIZE
    if is_train and cfg.AUGMENT.PASTE_PROB > 0:
        extra_args["paste_prob"] = cfg.AUGMENT.PASTE_PROB
        extra_args["paste_cat"] = cfg.AUGMENT.PASTE_CAT
        extra_args["paste_num"] = cfg.AUGMENT.PASTE_NUM

    # od to grounding
    if is_train and cfg.DATASETS.RANDOM_SAMPLE_NEG > 0:
        extra_args["random_sample_negative"] = cfg.DATASETS.RANDOM_SAMPLE_NEG
    if is_train and cfg.DATASETS.ADD_DET_PROMPT:
        extra_args["add_detection_prompt"] = True
    if is_train and cfg.DATASETS.USE_OD_AUG:
        extra_args["use_od_data_aug"] = True
    if is_train and cfg.DATASETS.USE_COCO_FORMAT:
        extra_args["use_coco_format"] = True
    if is_train and cfg.DATASETS.DISABLE_SHUFFLE:
        extra_args["disable_shuffle"] = True
    if cfg.DATASETS.ONE_HOT:
        extra_args["one_hot"] = True
    if is_train and len(cfg.DATASETS.PROMPT_VERSION) > 0:
        extra_args["prompt_engineer_version"] = cfg.DATASETS.PROMPT_VERSION
    if is_train and len(cfg.DATASETS.CONTROL_PROB) == 4:
        extra_args["control_probabilities"] = cfg.DATASETS.CONTROL_PROB
    if is_train and cfg.DATASETS.DISABLE_CLIP_TO_IMAGE:
        extra_args["disable_clip_to_image"] = cfg.DATASETS.DISABLE_CLIP_TO_IMAGE
    if is_train and cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT:
        extra_args["no_minus_one_for_one_hot"] = cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT
    if is_train:
        extra_args["separation_tokens"] = cfg.DATASETS.SEPARATION_TOKENS
    # caption
    if is_train and cfg.DATASETS.CAPTION_MIN_BOX > 0:
        extra_args["caption_min_box"] = cfg.DATASETS.CAPTION_MIN_BOX
    if is_train and cfg.DATASETS.REPLACE_CLEAN_LABEL:
        extra_args["replace_clean_label"] = True
    if is_train and cfg.DATASETS.FURTHER_SCREEN:
        extra_args["further_screen"] = True
    if is_train and cfg.DATASETS.CAPTION_CONF > 0.0:
        extra_args["caption_conf"] = cfg.DATASETS.CAPTION_CONF
    if is_train:
        extra_args["caption_nms"] = cfg.DATASETS.CAPTION_NMS
    if is_train and cfg.DATASETS.PACK_RANDOM_CAPTION_NUMBER > 0:
        extra_args["pack_random_caption_number"] = cfg.DATASETS.PACK_RANDOM_CAPTION_NUMBER
    if is_train and cfg.DATASETS.INFERENCE_CAPTION:
        extra_args["inference_caption"] = True
    if is_train and cfg.DATASETS.SAMPLE_NEGATIVE_FOR_GROUNDING_DATA > 0:
        extra_args["sample_negative_for_grounding_data"] = cfg.DATASETS.SAMPLE_NEGATIVE_FOR_GROUNDING_DATA
    if is_train and cfg.DATASETS.RANDOM_PACK_PROB > 0:
        extra_args["random_pack_prob"] = cfg.DATASETS.RANDOM_PACK_PROB
    if is_train and cfg.DATASETS.NO_RANDOM_PACK_PROBABILITY > 0:
        extra_args["no_random_pack_probability"] = cfg.DATASETS.NO_RANDOM_PACK_PROBABILITY
    if is_train:
        extra_args["safeguard_positive_caption"] = cfg.DATASETS.SAFEGUARD_POSITIVE_CAPTION
    if is_train:
        extra_args["local_debug"] = cfg.DATASETS.LOCAL_DEBUG
    if is_train:
        extra_args["no_mask_for_od"] = cfg.MODEL.DYHEAD.FUSE_CONFIG.NO_MASK_FOR_OD
    if is_train:
        extra_args["no_mask_for_gold"] = cfg.MODEL.DYHEAD.FUSE_CONFIG.NO_MASK_FOR_GOLD
    if is_train:
        extra_args["mlm_obj_for_only_positive"] = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_OBJ_FOR_ONLY_POSITIVE
    if cfg.DATASETS.OVERRIDE_CATEGORY and cfg.DATASETS.USE_OVERRIDE_CATEGORY:
        extra_args["override_category"] = cfg.DATASETS.OVERRIDE_CATEGORY
    if is_train:
        extra_args["caption_format_version"] = cfg.DATASETS.CAPTION_FORMAT_VERSION
    if is_train:
        extra_args["special_safeguard_for_coco_grounding"] = cfg.DATASETS.SPECIAL_SAFEGUARD_FOR_COCO_GROUNDING
    if is_train:
        extra_args["diver_box_for_vqa"] = cfg.DATASETS.DIVER_BOX_FOR_VQA
    
    extra_args["od_to_grounding_version"] = cfg.DATASETS.OD_TO_GROUNDING_VERSION
    extra_args["caption_prompt"] = cfg.DATASETS.CAPTION_PROMPT
    extra_args["use_caption_prompt"] = cfg.DATASETS.USE_CAPTION_PROMPT
    extra_args["description_file"] = cfg.DATASETS.DESCRIPTION_FILE
    extra_args["similarity_file"] = cfg.DATASETS.SIMILARITY_FILE
    extra_args["caption_vocab_file"] = cfg.DATASETS.CAPTION_VOCAB_FILE
    extra_args["caption_augmentation_version"] = cfg.DATASETS.CAPTION_AUGMENTATION_VERSION
    extra_args["cc_caption_augmentation_version"] = cfg.DATASETS.CC_CAPTION_AUGMENTATION_VERSION
    # extra_args['tokenizer'] = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
    if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
        # extra_args['tokenizer'] = build_tokenizer("clip")
        from transformers import CLIPTokenizerFast

        if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
            extra_args["tokenizer"] = CLIPTokenizerFast.from_pretrained(
                "openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
            )
        else:
            extra_args["tokenizer"] = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
    else:
        extra_args["tokenizer"] = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)

    if isinstance(dataset_list[0], (tuple, list)):
        datasets = build_dataset_by_group(
            dataset_list,
            transforms,
            DatasetCatalog,
            is_train,
            class_by_group=cfg.DATASETS.ALTERNATIVE_TRAINING,
            class_concat=cfg.DATASETS.CLASS_CONCAT,
            extra_args=extra_args,
        )
    else:
        datasets = build_dataset(
            cfg,
            dataset_list,
            transforms,
            DatasetCatalog,
            is_train,
            class_concat=cfg.DATASETS.CLASS_CONCAT,
            extra_args=extra_args,
        )

    data_loaders = []
    for di, dataset in enumerate(datasets):
        if is_train and cfg.SOLVER.MAX_EPOCH > 0:
            num_iters = cfg.SOLVER.MAX_EPOCH * len(dataset) // cfg.SOLVER.IMS_PER_BATCH
            print("Number of iterations are {}".format(num_iters))
            cfg.defrost()
            cfg.SOLVER.MAX_ITER = num_iters
            cfg.SOLVER.DATASET_LENGTH = len(dataset)
            cfg.freeze()
        if is_train and cfg.SOLVER.MULTI_MAX_EPOCH:
            num_iters = None
            cfg.defrost()
            cfg.SOLVER.MULTI_MAX_ITER += (cfg.SOLVER.MULTI_MAX_EPOCH[di] * len(dataset) // cfg.SOLVER.IMS_PER_BATCH,)
            cfg.freeze()

        if is_train and cfg.DATALOADER.DISTRIBUTE_CHUNK_AMONG_NODE:
            from .datasets.custom_distributed_sampler import DistributedSamplerChunkByNode

            chunk_or_not = []
            for i in dataset_list:
                if "bing_caption" in i:
                    chunk_or_not.append(True)
                else:
                    chunk_or_not.append(False)
            assert len(chunk_or_not) == len(dataset.datasets)
            """

            If we are training on 4 nodes, each with 8 GPUs

            """
            num_nodes = int(os.getenv("NODE_COUNT", os.getenv("OMPI_COMM_WORLD_SIZE", 1)))
            local_size = cfg.num_gpus // num_nodes
            node_rank = int(os.getenv("NODE_RANK", os.getenv("OMPI_COMM_WORLD_RANK", 0)))
            local_rank = cfg.local_rank
            sampler = DistributedSamplerChunkByNode(
                dataset=dataset,
                all_datasets=dataset.datasets,  # Assumming dataset is a ConcateDataset instance,
                chunk_or_not=chunk_or_not,
                num_replicas=cfg.num_gpus,  # total GPU number, e.g., 32
                rank=dist.get_rank(),  # Global Rank, e.g., 0~31
                node_rank=node_rank,  # Node Rank, e.g., 0~3
                node_number=num_nodes,  # how many node e.g., 4
                process_num_per_node=local_size,  # e.g., 8
                rank_within_local_node=local_rank,  # e.g., 0~7
            )
        else:
            sampler = make_data_sampler(
                dataset,
                shuffle,
                is_distributed,
                num_replicas=num_replicas,
                rank=rank,
                use_random_seed=cfg.DATALOADER.USE_RANDOM_SEED,
            )
        batch_sampler = make_batch_data_sampler(
            dataset, sampler, aspect_grouping, images_per_gpu, num_iters, start_iter, drop_last=is_train
        )
        collator = (
            BBoxAugCollator()
            if not is_train and cfg.TEST.USE_MULTISCALE
            else BatchCollator(cfg.DATALOADER.SIZE_DIVISIBILITY)
        )
        num_workers = cfg.DATALOADER.NUM_WORKERS
        data_loader = torch.utils.data.DataLoader(
            dataset,
            num_workers=num_workers,
            batch_sampler=batch_sampler,
            collate_fn=collator,
        )
        data_loaders.append(data_loader)
    if is_train and cfg.SOLVER.MULTI_MAX_EPOCH:
        cfg.defrost()
        cfg.SOLVER.MULTI_MAX_ITER += (
            cfg.SOLVER.MULTI_MAX_EPOCH[-1] * min([len(dataset) // cfg.SOLVER.IMS_PER_BATCH for dataset in datasets]),
        )
        cfg.freeze()

    if is_train and not cfg.DATASETS.ALTERNATIVE_TRAINING and not cfg.DATASETS.MULTISTAGE_TRAINING:
        # during training, a single (possibly concatenated) data_loader is returned
        assert len(data_loaders) == 1
        return data_loaders[0]

    return data_loaders