File size: 8,776 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.distributed as dist
import time
from torchvision.ops import nms
import random
import numpy as np
from PIL import Image, ImageDraw
import pdb
from maskrcnn_benchmark.structures.bounding_box import BoxList
from .modulated_coco import ConvertCocoPolysToMask
from .tsv import ODTSVDataset, TSVYamlDataset
from .od_to_grounding import sanity_check_target_after_processing
from copy import deepcopy


class PseudoData(TSVYamlDataset):
    def __init__(
        self,
        yaml_file,
        transforms,
        return_tokens,
        return_masks,
        tokenizer,
        caption_min_box=1,
        replace_clean_label=False,
        further_screen=False,
        caption_conf=0.5,
        caption_nms=-1,
        pack_random_caption_number=0,
        inference_caption=False,
        sample_negative_for_grounding_data=-1,
        random_pack_prob=-1.0,
        no_random_pack_probability=0.0,
        safeguard_positive_caption=True,
        mlm_obj_for_only_positive=False,
        caption_format_version="v1",
        local_debug=False,
        max_query_len=256,
        diver_box_for_vqa=False,
        **kwargs
    ):
        super(PseudoData, self).__init__(yaml_file, None, replace_clean_label)
        self.yaml_file = yaml_file
        self._transforms = transforms
        self.max_query_len = max_query_len
        self.prepare = ConvertCocoPolysToMask(
            return_masks=return_masks, return_tokens=return_tokens, tokenizer=tokenizer, max_query_len=max_query_len
        )
        self.diver_box_for_vqa = diver_box_for_vqa
        if "qa" in self.yaml_file:
            assert self.diver_box_for_vqa  # must diver box
        self.tokenizer = tokenizer
        self.caption_min_box = caption_min_box
        self.replace_clean_label = replace_clean_label
        self.further_screen = further_screen
        self.pack_random_caption_number = pack_random_caption_number
        self.caption_format_version = caption_format_version

        self.caption_conf = caption_conf
        self.caption_nms = caption_nms
        self.inference_caption = inference_caption
        self.sample_negative_for_grounding_data = sample_negative_for_grounding_data
        self.random_pack_prob = random_pack_prob
        self.no_random_pack_probability = no_random_pack_probability
        self.safeguard_positive_caption = safeguard_positive_caption
        self.mlm_obj_for_only_positive = mlm_obj_for_only_positive
        self.local_debug = local_debug
        try:
            self.rank = dist.get_rank()
        except:
            self.rank = 0

    def __len__(self):
        return super(PseudoData, self).__len__()

    @staticmethod
    def check_for_overlap(range1, range2):
        if range1[0] > range2[1] or range2[0] > range1[1]:
            return False
        return True

    def divert_boxes(self, anno):
        # first get answer start and end
        answer_start = len(anno["text"]) + 1  # +1 for the space
        answer_end = len(anno["caption"])

        question = anno["caption"][:answer_start]  # get the question

        mask_start = len(question)
        # add the mask token
        mask_token = self.tokenizer.mask_token
        if mask_token is None:
            mask_token = "answer"
        question += mask_token
        mask_end = len(question)

        # divert the box
        for i in range(len(anno["bboxes"])):
            # check over lap
            for j in range(len(anno["tokens_positive"][i])):
                if self.check_for_overlap(anno["tokens_positive"][i][j], [answer_start, answer_end]):
                    # if overlap, then divert the box to the mask token
                    anno["tokens_positive"][i][j] = [mask_start, mask_end]

        anno["caption"] = question
        return question, anno

    def __getitem__(self, idx):
        img, anno, _, scale = super(PseudoData, self).__getitem__(idx)
        if self.inference_caption:
            caption = None
            if isinstance(anno, list):
                caption = anno[0]["caption"]  # inference mode for bing
                anno = []
            elif len(anno) == 1:
                caption = anno["caption"]  # inference mode for googlecc
                anno = []
            else:
                caption = " ".join(anno["captions"])
                anno = []
        else:
            if self.caption_format_version == "v2":
                anno = self.convert_anno_from_yiling_to_ours(anno)

            if self.further_screen:
                conf = self.caption_conf
                nms_thre = self.caption_nms

                bboxes = torch.as_tensor(anno["bboxes"]).float()
                scores = torch.as_tensor(anno["scores"])
                tokens_positive = anno["tokens_positive"]

                keep = scores > conf
                scores = scores[keep]
                bboxes = bboxes[keep]
                tokens_positive = [i for index, i in enumerate(tokens_positive) if keep[index]]

                assert len(tokens_positive) == len(bboxes) == len(scores)

                if len(bboxes) < self.caption_min_box:  # Retry triggered!
                    return self[np.random.choice(len(self))]

                if nms_thre > 0:
                    keep = nms(boxes=bboxes, scores=scores, iou_threshold=nms_thre)
                    scores = scores[keep]
                    bboxes = bboxes[keep]
                    tokens_positive = [tokens_positive[i] for i in keep]
                    assert len(tokens_positive) == len(bboxes) == len(scores)

                # Write back
                anno["bboxes"] = bboxes.tolist()
                anno["scores"] = scores.tolist()
                anno["tokens_positive"] = tokens_positive

            boxes = torch.as_tensor(anno["bboxes"])

            if len(boxes) < self.caption_min_box:  # Retry triggered!
                return self[np.random.choice(len(self))]

            target = BoxList(boxes, (anno["img_w"], anno["img_h"]), mode="xyxy")
            target = target.clip_to_image(remove_empty=True)

            if self.diver_box_for_vqa:
                caption, anno = self.divert_boxes(anno=anno)  # will change caption and "tokens_positive"

            caption = anno["caption"]

            greenlight_span_for_masked_lm_objective = [(0, len(caption))]

            new_anno = []
            areas = target.area()
            for i in range(len(target)):
                new_anno_i = {}
                new_anno_i["area"] = areas[i]
                new_anno_i["iscrowd"] = 0
                new_anno_i["image_id"] = idx
                new_anno_i["category_id"] = 1  # following vg and others
                new_anno_i["id"] = None
                new_anno_i["bbox"] = target.bbox[i].numpy().tolist()
                new_anno_i["tokens_positive"] = anno["tokens_positive"][i]
                new_anno.append(new_anno_i)
            anno = new_anno

        annotations = {"image_id": idx, "annotations": anno, "caption": caption}
        annotations["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
        img, annotations = self.prepare(img, annotations, box_format="xyxy")

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        # add additional property
        for ann in annotations:
            target.add_field(ann, annotations[ann])

        # This is the real image_id
        image_id = self.get_img_id(idx)
        # Can insert additional field into target if needed

        sanity_check_target_after_processing(target)

        return img, target, idx

    def convert_anno_from_yiling_to_ours(self, anno):
        flatterned_bboxes = []
        flatterned_tokens_positive = []
        flatterned_bboxes_scores = []
        for i in range(len(anno["bboxes"])):
            # i is the index for entity
            for j in range(len(anno["bboxes"][i])):
                # j is the index for each box
                flatterned_bboxes.append(anno["bboxes"][i][j])
                flatterned_tokens_positive.append(
                    anno["tokens_positive"][i]
                )  # Assume this box corresponds to all the token_spans for this entity
                flatterned_bboxes_scores.append(anno["scores"][i][j])
        anno["bboxes"] = flatterned_bboxes
        anno["tokens_positive"] = flatterned_tokens_positive
        anno["scores"] = flatterned_bboxes_scores
        return anno

    def get_raw_image(self, idx):
        image, *_ = super(PseudoData, self).__getitem__(idx)
        return image

    def get_img_id(self, idx):
        line_no = self.get_line_no(idx)
        if self.label_tsv is not None:
            row = self.label_tsv.seek(line_no)
            img_id = row[0]
            return img_id