File size: 9,630 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""

COCO dataset which returns image_id for evaluation.



Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py

"""

import torch
import json
from PIL import Image, ImageDraw

from .modulated_coco import ConvertCocoPolysToMask
from .tsv import ODTSVDataset
from pycocotools.coco import COCO
from maskrcnn_benchmark.structures.bounding_box import BoxList
import random
from .od_to_grounding import convert_object_detection_to_grounding_optimized_for_od, check_for_positive_overflow, sanity_check_target_after_processing, od_to_grounding_optimized_streamlined
from ._od_to_description import DescriptionConverter
import pdb
from collections import defaultdict

class CocoDetectionTSV(ODTSVDataset):
    def __init__(

        self,

        name,

        yaml_file,

        transforms,

        return_tokens,

        tokenizer,

        extra_fields,

        random_sample_negative=-1,

        add_detection_prompt=False,

        add_detection_prompt_advanced=False,

        use_od_data_aug=False,

        control_probabilities={},

        disable_shuffle=False,

        prompt_engineer_version="v2",

        prompt_limit_negative=-1,

        positive_question_probability=0.6,

        negative_question_probability=0.8,

        full_question_probability=0.5,

        disable_clip_to_image=False,

        separation_tokens=" ",

        no_mask_for_od=False,

        max_num_labels=-1,

        max_query_len=256,

        od_to_grounding_version="legacy",

        description_file = None,

        similarity_file = None,

        **kwargs

    ):
        super(CocoDetectionTSV, self).__init__(yaml_file, extra_fields, **kwargs)

        self._transforms = transforms
        self.name = name
        self.max_query_len = max_query_len
        self.prepare = ConvertCocoPolysToMask(
            return_masks=False, return_tokens=return_tokens, tokenizer=tokenizer, max_query_len=max_query_len
        )
        self.tokenizer = tokenizer

        self.control_probabilities = control_probabilities
        self.random_sample_negative = random_sample_negative
        self.add_detection_prompt = add_detection_prompt
        self.add_detection_prompt_advanced = add_detection_prompt_advanced
        self.use_od_data_aug = use_od_data_aug

        self.prompt_engineer_version = prompt_engineer_version
        self.prompt_limit_negative = prompt_limit_negative
        self.positive_question_probability = positive_question_probability
        self.negative_question_probability = negative_question_probability
        self.full_question_probability = full_question_probability
        self.separation_tokens = separation_tokens
        self.disable_clip_to_image = disable_clip_to_image
        self.disable_shuffle = disable_shuffle
        self.no_mask_for_od = no_mask_for_od
        self.max_num_labels = max_num_labels

        self.od_to_grounding_version = od_to_grounding_version
        self.description_file = description_file
        self.similarity_file = similarity_file
        if "description" in self.od_to_grounding_version:
            self.od_grounding_converter = DescriptionConverter(
                self.description_file,
                self.od_to_grounding_version,
                [],
                self.ind_to_class,
                self.similarity_file,)

        ### stat
        self.pos_rate = defaultdict(list)

    def __len__(self):
        return super(CocoDetectionTSV, self).__len__()

    def categories(self, no_background=True):
        categories = self.coco.dataset["categories"]
        label_list = {}
        for index, i in enumerate(categories):
            # assert(index + 1 == i["id"])
            if not no_background or (i["name"] != "__background__" and i["id"] != 0):
                label_list[i["id"]] = i["name"]
        return label_list

    def __getitem__(self, idx):
        # tgt is a BoxList
        img, target, _, scale = super(CocoDetectionTSV, self).__getitem__(idx)
        image_id = self.get_img_id(idx)
        restricted_negative_list = None

        if not self.disable_clip_to_image:
            target = target.clip_to_image(remove_empty=True)

        original_box_num = len(target)

        target, positive_caption_length = check_for_positive_overflow(
            target, self.ind_to_class, self.tokenizer, self.max_query_len - 2
        )  # leave some space for the special tokens

        if len(target) < original_box_num:
            print("WARNING: removed {} boxes due to positive caption overflow".format(original_box_num - len(target)))

        if "mixed" in self.od_to_grounding_version: # 70% v.s. 30%
            if random.random() < 0.7:
                annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions, target = self.od_grounding_converter.train_od_to_grounding(
                        target=target,
                        image_id=image_id,
                        ind_to_class=self.ind_to_class,
                        tokenizer=self.tokenizer,
                        random_sample_negative=self.random_sample_negative,
                    )
            else:
                annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_object_detection_to_grounding_optimized_for_od(
                    target=target,
                    image_id=image_id,
                    ind_to_class=self.ind_to_class,
                    disable_shuffle=self.disable_shuffle,
                    add_detection_prompt=self.add_detection_prompt,
                    add_detection_prompt_advanced=self.add_detection_prompt_advanced,
                    random_sample_negative=self.random_sample_negative,
                    control_probabilities=self.control_probabilities,
                    restricted_negative_list=restricted_negative_list,
                    separation_tokens=self.separation_tokens,
                    max_num_labels=self.max_num_labels,
                    positive_caption_length=positive_caption_length,
                    tokenizer=self.tokenizer,
                    max_seq_length=self.max_query_len - 2,
                )
        elif "description" in self.od_to_grounding_version:
            annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions, target = self.od_grounding_converter.train_od_to_grounding(
                target=target,
                image_id=image_id,
                ind_to_class=self.ind_to_class,
                tokenizer=self.tokenizer,
                random_sample_negative=self.random_sample_negative,
            )
        elif self.od_to_grounding_version != "legacy":
            annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions, target = od_to_grounding_optimized_streamlined(
                target=target,
                image_id=image_id,
                ind_to_class=self.ind_to_class,
                tokenizer=self.tokenizer,
                od_to_grounding_version=self.od_to_grounding_version,
            )
        else:
            annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_object_detection_to_grounding_optimized_for_od(
            target=target,
            image_id=image_id,
            ind_to_class=self.ind_to_class,
            disable_shuffle=self.disable_shuffle,
            add_detection_prompt=self.add_detection_prompt,
            add_detection_prompt_advanced=self.add_detection_prompt_advanced,
            random_sample_negative=self.random_sample_negative,
            control_probabilities=self.control_probabilities,
            restricted_negative_list=restricted_negative_list,
            separation_tokens=self.separation_tokens,
            max_num_labels=self.max_num_labels,
            positive_caption_length=positive_caption_length,
            tokenizer=self.tokenizer,
            max_seq_length=self.max_query_len - 2,
        )

        # assert(len(self.tokenizer.tokenize(caption)) <= self.max_query_len-2)
        anno = {
            "image_id": image_id,
            "annotations": annotations,
            "caption": caption,
            "label_to_positions": label_to_positions,
        }
        if "spans" in target.extra_fields:
            anno["spans"] = target.extra_fields["spans"]
            if not isinstance(anno["spans"], list):
                anno["spans"] = anno["spans"].tolist()

        anno["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective

        if self.no_mask_for_od:
            anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))

        img, anno = self.prepare(img, anno, box_format="xyxy")

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        # add additional property
        for ann in anno:
            target.add_field(ann, anno[ann])

        # sanity_check_target_after_processing(target)

        return img, target, idx

    def get_raw_image(self, idx):
        image, *_ = super(CocoDetectionTSV, self).__getitem__(idx)
        return image

    def get_img_id(self, idx):
        line_no = self.get_line_no(idx)
        if self.label_tsv is not None:
            row = self.label_tsv.seek(line_no)
            img_id = row[0]
            try:
                return int(img_id)
            except:
                return idx