Spaces:
Sleeping
Sleeping
File size: 44,754 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 |
# Utilities for converting object detection data into grounding data
import numpy as np
import torch
import pdb, json, random, re
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file
from collections import defaultdict
import json
import json
import nltk
from collections import Counter
from tqdm import tqdm
import random
import pdb
from copy import deepcopy
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from maskrcnn_benchmark.data.datasets.parse_gpt import GPTOutputParser
def find_only_noun(caption: str):
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<NN.*>+}"
#grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = list()
for subtree in result.subtrees():
if subtree.label() == "NP":
noun_phrases.append(" ".join(t[0] for t in subtree.leaves()))
return noun_phrases
def find_jj_noun(caption: str):
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<JJ.*>+<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = list()
for subtree in result.subtrees():
if subtree.label() == "NP":
noun_phrases.append(" ".join(t[0] for t in subtree.leaves()))
return noun_phrases
def remove_stop_words(caption, stop_words):
word_tokens = caption.split(" ")
# converts the words in word_tokens to lower case and then checks whether
# they are present in stop_words or not
filtered_sentence = [w for w in word_tokens if not w.lower() in stop_words]
# with no lower case conversion
filtered_sentence = []
for w in word_tokens:
if w not in stop_words:
filtered_sentence.append(w)
return " ".join(filtered_sentence)
def rand_element(dic):
ind = random.randint(0, len(dic) - 1)
return list(dic.keys())[ind]
def replace_word(w, voc):
new_w = rand_element(voc)
while new_w == w:
new_w = rand_element(voc)
return new_w
def replace_pos(tags, l, vocab):
if len(l) == 0:
return '', ''
ind = random.randint(0, len(l) - 1)
ind = l[ind]
word, tag = tags[ind]
new_word = replace_word(word, vocab[tag])
return word, new_word
noun_pos = set(['NN', 'NNS', 'NNP', 'NNPS'])
verb_pos = set(['VB', 'VBG', 'VBD', 'VBN', 'VBP', 'VBZ'])
adj_pos = set(['JJ', 'JJR', 'JJS'])
class CaptionAugmentation():
def __init__(self, caption_augmentation_version, tokenizer = None, caption_vocab_file = None):
self.caption_augmentation_version = caption_augmentation_version
self.tokenizer = tokenizer
# v1 and v2 are legacy experimental versions so we remove them from the code
if self.caption_augmentation_version.startswith("v3"):
self.augmentation = AugmentationV3(self.caption_augmentation_version, self.tokenizer, caption_vocab_file)
elif self.caption_augmentation_version.startswith("v4"):
self.augmentation = AugmentationV4(self.caption_augmentation_version, self.tokenizer, caption_vocab_file)
elif self.caption_augmentation_version.startswith("mixed"):
# format: mixed.v4-v3.4-4-2.content.v1
self.augmentations = []
self.rations = []
versions = self.caption_augmentation_version.split(".")[1]
ratios = self.caption_augmentation_version.split(".")[2]
suffix = ".".join(self.caption_augmentation_version.split(".")[3:])
for version in versions.split("-"):
self.augmentations.append(CaptionAugmentation(version + "." + suffix, self.tokenizer, caption_vocab_file))
for ratio in ratios.split("-"):
self.rations.append(float(ratio) * 0.1)
print(self.rations)
print(self.augmentations)
else:
raise NotImplementedError
def __call__(self, caption, target, **kwargs):
if self.caption_augmentation_version.startswith("mixed"):
# do a mixed augmentation
random_prob = random.random()
for augmentation, ratio in zip(self.augmentations, self.rations):
if random_prob < ratio:
return augmentation(caption, target, **kwargs)
random_prob -= ratio
return caption, target, None # this is the vanilla case
else:
return self.augmentation(caption, target, **kwargs)
class NegativeCaptionGenerator():
def __init__(self, caption_augmentation_version, **kwargs):
self.caption_augmentation_version = caption_augmentation_version
if self.caption_augmentation_version.endswith("v1"):
self.generator = NegativeCaptionGeneratorV1(self.caption_augmentation_version, **kwargs)
elif self.caption_augmentation_version.endswith("v2"):
self.generator = NegativeCaptionGeneratorV2(self.caption_augmentation_version, **kwargs)
else:
raise NotImplementedError
def __call__(self, caption, **kwargs):
return self.generator(caption, **kwargs)
class NegativeCaptionGeneratorV1():
def __init__(self, caption_augmentation_version, caption_vocab_file=None):
self.caption_augmentation_version = caption_augmentation_version
self.caption_vocab_file = caption_vocab_file
self.vocab = json.load(open('tools/data_process/image_caption/vocab.json'))
for tag in self.vocab:
most_common = 1000
self.vocab[tag] = dict(Counter(self.vocab[tag]).most_common(1000))
min_cnt = 5
self.vocab[tag] = {x: cnt for x, cnt in self.vocab[tag].items() if cnt >= min_cnt}
def __call__(self, caption, num_negative_caption=4):
tokens = nltk.word_tokenize(caption)
tags = nltk.pos_tag(tokens)
nouns = []
verbs = []
adjs = []
for ind, (word, tag) in enumerate(tags):
if tag in noun_pos:
nouns.append(ind)
elif tag in verb_pos:
verbs.append(ind)
elif tag in adj_pos:
adjs.append(ind)
negative_caption = []
for i in range(random.randint(0, num_negative_caption)):
replace_atoms = random.choice([nouns, verbs, adjs])
word, new_word = replace_pos(tags, replace_atoms, self.vocab)
if word == '':
continue
new_caption = caption.replace(word, new_word)
negative_caption.append(new_caption)
return negative_caption
class NegativeCaptionGeneratorV2():
def __init__(self, caption_augmentation_version, tokenizer = None, caption_vocab_file="tools/files/llm_10K_noun_freq_mixed.json"):
self.caption_augmentation_version = caption_augmentation_version
self.stop_words = set(stopwords.words('english'))
self.tokenizer = tokenizer
with open(caption_vocab_file, 'r') as f:
self.vocab = json.load(f)
def parse_info(self, noun):
# given a noun, return the category and other info
'''
"chrome faucet": ["Yes. 'Chrome faucet' has a tangible appearance and is a type of plumbing fixture.\nA few things that are visually similar to 'chrome faucet' but are not 'chrome faucet' are:\tbrushed nickel faucet\tstainless steel faucet\tchrome showerhead\tchrome soap dispenser\nThere are several useful visual features to tell there is 'chrome faucet' and not similar things in a photo:\tchrome finish\ton/off handles\tspout for water flow\tsingle or double handled faucet\tmounted on a sink or countertop", 57]
'''
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return 0, [], [], ""
info = self.vocab[noun]
# check the format of type of thing
if "has a tangible appearance and is" in info[0]:
type_of_thing = info[0].split(" has a tangible appearance and is ")[-1].split(".")[0]
elif "has a tangible appearance" in info[0]:
type_of_thing = info[0].split(" has a tangible appearance ")[-1].split(".")[0]
else:
#print(info[0], "type of thing not found")
type_of_thing = ""
if " are:\t" in info[0]:
similar_things = info[0].split(" are:\t")[-1].split("\nThere are several useful visual features to tell")[0].split("\t")
similar_things = [i for i in similar_things if i.strip() != ""]
else:
#print(info[0], "similar things not found")
similar_things = []
if " and not similar things in a photo:\t" in info[0]:
visual_feature_descriptions = info[0].split(" and not similar things in a photo:\t")[-1].split("\t")
visual_feature_descriptions = [i for i in visual_feature_descriptions if i.strip() != ""]
else:
#print(info[0], "visual feature descriptions not found")
visual_feature_descriptions = []
return info[1], visual_feature_descriptions, similar_things, type_of_thing
def __call__(self, caption, num_negative_caption=4):
nouns = set(caption.split(" ")) #find_only_noun(caption)
negative_captions = []
for noun in nouns:
freq, visual_feature_descriptions, similar_things, type_of_thing = self.parse_info(noun)
if freq > 20000:
continue
# print(freq, noun, visual_feature_descriptions, similar_things, type_of_thing)
if len(visual_feature_descriptions) == 0 or len(similar_things) == 0 or type_of_thing == "Yes":
continue # did not find the noun in the vocab
negative_captions.append(caption.replace(noun, random.choice(similar_things)))
return negative_captions
class AugmentationV3():
'''
Extract the noun entity; get descriptions and confusable entities; form the new query; throw away the original caption
'''
def __init__(self, caption_augmentation_version, tokenizer = None, caption_vocab_file="tools/files/llm_10K_noun_freq_mixed.json"):
self.caption_augmentation_version = caption_augmentation_version
self.tokenizer = tokenizer
with open(caption_vocab_file, 'r') as f:
self.vocab = json.load(f)
self.vocab_keys = list(self.vocab.keys())
self.stop_words = set(stopwords.words('english'))
self.do_augment_prob = 1.0
self.include_name_prob = 0.5
self.include_only_description_prob = 0.0
self.length_limit = 800 if "span" in caption_augmentation_version else 180
self.gpt_parser = GPTOutputParser(caption_augmentation_version.split(".")[-1])
def parse_info(self, noun):
# given a noun, return the category and other info
'''
{'type': 'human', 'description': 'female; could have long hair; could wear dresses', 'similar objects': ['girl', 'lady', 'mother']}
'''
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return 0, [], [], ""
info = self.vocab[noun]
descriptions = self.gpt_parser(info[0])
return info[1], descriptions["description"], descriptions["similar objects"], descriptions["type"]
def get_freq(self, noun):
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return 0
info = self.vocab[noun]
return info[1]
def get_similar_things(self, noun):
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return []
info = self.vocab[noun]
descriptions = self.gpt_parser(info[0])
return descriptions["similar objects"]
def form_span(self, noun):
noun = remove_stop_words(noun, self.stop_words)
info = self.vocab[noun]
description = info[0]
if random.random() < self.include_name_prob:
#postive_span = "{}, {}".format(noun, type_of_thing)
#final_span = "{}, {}, {}".format(noun, type_of_thing, ", ".join(similar_visual_feature_descriptions))
final_span, end_index, spans, *_ = self.gpt_parser.form_span(noun, description, type = "vanilla_span", positive_range = "partial")
else:
final_span, end_index, spans, *_ = self.gpt_parser.form_span(noun, description, type = "remove_noun_span", positive_range = "partial")
return final_span, end_index, spans
def __call__(self, caption, target, **kwargs):
# 1. get the categories mentioned in the caption
original_str_spans = []
original_nouns = defaultdict(list)
for box_index, box in enumerate(target):
for start, end in box["tokens_positive"]:
original_str_spans.append(caption[start:end])
if "nouns" in box:
original_nouns[caption[start:end]] = box["nouns"]
original_str_spans = set(original_str_spans)
#### Important structures
positive_text_pieces = {} # mapping from positive text pieces to the original text span
positive_text_pieces_reverse = {}
positive_text_pieces_center_length = {}
all_pieces = []
text_pieces_to_spans = {} # mapping from text pieces to the spans
all_spans = [] # all the spans, noun_num x span_num_each_noun x 2
#####
length_limit = self.length_limit
original_str_spans = list(original_str_spans)
# shuffle
random.shuffle(original_str_spans)
for text_span in original_str_spans:
if len(original_nouns[text_span]) == 0:
nouns = text_span.split(" ") #[text_span] #find_only_noun(text_span)
else:
nouns = original_nouns[text_span]
for noun in nouns:
frequency = self.get_freq(noun)
if frequency > 10000 or frequency == 0:
continue
positive_span, centern_noun_lenghth, span_locations = self.form_span(noun)
length_limit -= len(positive_span.split(" "))
if length_limit < 0:
break
text_pieces_to_spans[positive_span] = span_locations
positive_text_pieces[positive_span] = text_span
positive_text_pieces_reverse[text_span] = positive_span
positive_text_pieces_center_length[positive_span] = centern_noun_lenghth
all_pieces.append(positive_span)
# do the augmentation
if "no_similar" in self.caption_augmentation_version:
continue # skip the similar things
for similar_thing in self.get_similar_things(noun):
frequency = self.get_freq(similar_thing)
if frequency > 10000 or frequency == 0:
continue # did not find the noun in the vocab
negative_span, _, span_locations = self.form_span(similar_thing)
length_limit -= len(negative_span.split(" "))
if length_limit < 0:
break
all_pieces.append(negative_span)
text_pieces_to_spans[negative_span] = span_locations # record the span mapping
# randomly sample some negatives
if len(all_pieces) == 0:
return caption, target, None
if random.random() > self.do_augment_prob: #
return caption, target, None
# if we have some space left, sample more descriptions
while length_limit > 0:
random_noun = random.choice(self.vocab_keys)
frequency = self.get_freq(random_noun)
if frequency > 10000 or frequency == 0:
continue
negative_span, _, span_locations = self.form_span(random_noun,)
length_limit -= len(negative_span.split(" "))
if length_limit < 0:
break
all_pieces.append(negative_span) # add the negative span
text_pieces_to_spans[negative_span] = span_locations # record the span mapping
# 2. randomly assemble the caption
new_target = deepcopy(target)
random.shuffle(all_pieces)
final_caption = ""
# create the mapping from "text_span" to "tokens_positive"
text_span_to_tokens_positive = {}
for text_piece in all_pieces:
if text_piece in positive_text_pieces:
text_span_to_tokens_positive[positive_text_pieces[text_piece]] = (len(final_caption), len(final_caption) + positive_text_pieces_center_length[text_piece]) # only mark the centern noun as positive
# update the spans
cur_length = len(final_caption)
for span in text_pieces_to_spans[text_piece]:
span[0] = span[0] + cur_length
span[1] = span[1] + cur_length
final_caption += text_piece
# update the target
new_target = []
for box in target:
new_tokens_positive = []
new_spans = []
for start, end in box["tokens_positive"]:
if caption[start:end] in text_span_to_tokens_positive:
new_tokens_positive.append(text_span_to_tokens_positive[caption[start:end]])
new_spans.extend(text_pieces_to_spans[positive_text_pieces_reverse[caption[start:end]]])
if len(new_tokens_positive) != 0:
_box = deepcopy(box)
_box["tokens_positive"] = new_tokens_positive
_box["spans_positive"] = new_spans
new_target.append(_box)
'''
For using span representation, all that needs done is to give: spans, and spans_positive for each box
'''
all_spans = list(text_pieces_to_spans.values())
all_spans = sorted(all_spans, key=lambda x: x[0][0])
#print("V3 Augmented caption: ", final_caption)
# Need to provide the spans
return final_caption, new_target, all_spans
class AugmentationV4():
def __init__(self, caption_augmentation_version, tokenizer, caption_vocab_file):
self.caption_augmentation_version = caption_augmentation_version
self.stop_words = set(stopwords.words('english'))
self.tokenizer = tokenizer
self.do_augment_prob = 0.9
self.include_name_prob = 0.5
self.include_only_description_prob = 0.0
self.length_limit = 800 if "span" in caption_augmentation_version else 180
self.gpt_parser = GPTOutputParser(caption_augmentation_version.split(".")[-1])
with open(caption_vocab_file, 'r') as f:
self.vocab = json.load(f)
self.vocab_keys = list(self.vocab.keys())
self.include_v3_augmentation = "include_v3" in caption_augmentation_version
# do a stat
from ._pos_rate import PosRateController, PosRateControllerLength, PosRateControllerV2
self.pos_rate_controller = PosRateControllerV2(max_length=35, center_length = 20)
def parse_info(self, noun):
# given a noun, return the category and other info
'''
{'type': 'human', 'description': 'female; could have long hair; could wear dresses', 'similar objects': ['girl', 'lady', 'mother']}
'''
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return 0, [], [], ""
info = self.vocab[noun]
descriptions = self.gpt_parser(info[0])
return info[1], descriptions["description"], descriptions["similar objects"], descriptions["type"]
def get_freq(self, noun):
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return 0
info = self.vocab[noun]
return info[1]
def get_similar_things(self, noun):
noun = remove_stop_words(noun, self.stop_words)
if noun not in self.vocab:
return []
info = self.vocab[noun]
descriptions = self.gpt_parser(info[0])
return descriptions["similar objects"]
def form_span(self, noun):
noun = remove_stop_words(noun, self.stop_words)
info = self.vocab[noun]
description = info[0]
if random.random() < self.include_name_prob:
#postive_span = "{}, {}".format(noun, type_of_thing)
#final_span = "{}, {}, {}".format(noun, type_of_thing, ", ".join(similar_visual_feature_descriptions))
final_span, end_index, spans, *_ = self.gpt_parser.form_span(noun, description, type = "vanilla_span")
else:
final_span, end_index, spans, *_ = self.gpt_parser.form_span(noun, description, type = "remove_noun_span")
return final_span, end_index, spans
def simple_gpt_parser(self, gpt_output):
'''
Visually concrete phrases and their visual descriptions: {"beans": "a kind of vegetable, small, round, usually greeen"}
Negative visual phrases and their visual descriptions: {"coffee beans": "a kind of vegetable, small, round, brown and dark", "beeds": "a kind of decorations, small, round, colorful"}
Negative captions: ["the beans in the green silver cup.", "the apples in the red silicone cup.", "the beans in the red porcelain cup."]
'''
try:
if "\n" not in gpt_output:
pos_description = gpt_output[gpt_output.find("1. Visually concrete objects and descriptions:") : gpt_output.find(" 2. Objects that can be confused with the above objects:")].replace("1. Visually concrete objects and descriptions:", "").strip()
pos_description = json.loads(pos_description)
neg_description = gpt_output[gpt_output.find(" 2. Objects that can be confused with the above objects:") : gpt_output.find(" 3. Negative captions:")].replace(" 2. Objects that can be confused with the above objects:", "").strip()
neg_description = json.loads(neg_description)
neg_captions = gpt_output[gpt_output.find(" 3. Negative captions:") : ].replace(" 3. Negative captions:", "").strip().replace("</s>", "").replace("<unk>", "")
neg_captions = json.loads(neg_captions)
else:
pos_description = gpt_output.split("\n")[0].split("descriptions: ")[1].strip()
pos_description = json.loads(pos_description)
try:
neg_description = gpt_output.split("\n")[1].split("descriptions: ")[1].strip()
neg_description = json.loads(neg_description)
except:
neg_description = gpt_output.split("\n")[1].split("objects: ")[1].strip()
neg_description = json.loads(neg_description)
neg_captions = gpt_output.split("\n")[2].split("captions: ")[1].strip()
neg_captions = json.loads(neg_captions)
return {
"pos_description": pos_description,
"neg_description": neg_description,
"neg_captions": neg_captions
}
except:
return {
"pos_description": {},
"neg_description": {},
"neg_captions": []
}
@staticmethod
def randomly_assemble_pieces_while_maintaining_spans_locations(
caption, # the original caption
all_pieces, # a list of text strings that will form the final caption
positive_text_pieces, # a mapping from the positive text pieces to the original text piece
positive_text_pieces_reverse, # reversed mapping
positive_text_pieces_center_length, # the length of the center noun
text_pieces_to_spans, # record the mapping from text pieces to their spans
target, # a list of boxes, each box has a "tokens_positive" field
):
final_caption = ""
# create the mapping from "text_span" to "tokens_positive"
text_span_to_tokens_positive = {}
for text_piece in all_pieces:
if text_piece in positive_text_pieces:
text_span_to_tokens_positive[positive_text_pieces[text_piece]] = (len(final_caption), len(final_caption) + positive_text_pieces_center_length[text_piece]) # only mark the centern noun as positive
# update the spans
cur_length = len(final_caption)
for span in text_pieces_to_spans[text_piece]:
span[0] = span[0] + cur_length
span[1] = span[1] + cur_length
final_caption += text_piece
# update the target
new_target = []
for box in target:
new_tokens_positive = []
new_spans = []
for start, end in box["tokens_positive"]:
if caption[start:end] in text_span_to_tokens_positive:
new_tokens_positive.append(text_span_to_tokens_positive[caption[start:end]])
new_spans.extend(text_pieces_to_spans[positive_text_pieces_reverse[caption[start:end]]])
if len(new_tokens_positive) != 0:
_box = deepcopy(box)
_box["tokens_positive"] = new_tokens_positive
_box["spans_positive"] = new_spans
new_target.append(_box)
'''
For using span representation, all that needs done is to give: spans, and spans_positive for each box
'''
all_spans = list(text_pieces_to_spans.values())
all_spans = sorted(all_spans, key=lambda x: x[0][0])
return final_caption, new_target, all_spans
def merge_token_posivie(self, tokens_positive):
previous_end = -5
current_start = -5
new_tokens_positive = []
for token_positive in tokens_positive:
# try to merge tokens positive if they are continuous
if current_start == -5: # this is the start
current_start = token_positive[0]
previous_end = token_positive[1]
continue
if token_positive[0] == previous_end + 1: # continus
previous_end = token_positive[1]
else:
new_tokens_positive.append((current_start, previous_end))
current_start = token_positive[0]
previous_end = token_positive[1]
new_tokens_positive.append((current_start, previous_end))
return new_tokens_positive
def _change_target(self, start_original_span, end_original_span, description, target, caption, centern_noun_lenghth):
subcaptions = []
# find if there is a match
matched_i = False
for box_index, box in enumerate(target):
for start, end in box["tokens_positive"]:
# if the tokens_positive is within the span or it contains the span
if (start_original_span <= start and end <= end_original_span) or (start <= start_original_span and end_original_span <= end):
# add the description to the positive_text_pieces
# mark the matching between this box and this new subcaption # need to think later
# TODO: support partial match
box['tokens_positive'].append((len(caption), len(caption) + centern_noun_lenghth))
matched_i = True
if matched_i:
# add the description to the caption
caption += description
subcaptions.append(description)
#negative_captions.extend(list(gpt_result["neg_description"].values()))
return caption, subcaptions, target
def __call__(self, caption, target, gpt3_outputs = None,):
if gpt3_outputs is None:
return caption, target, None # skip this augmentation
####
negative_captions = []
subcaptions = []
original_subcaptions = []
grouping_subcaptions = defaultdict(list)
####
probablity = random.random()
# 40% chance to only include original subcaptions and neg captions
# 20% chance to include only v3 captions
# 10% chance to include only v4 descriptions
# 20% chance to include all kinds of stuff
# 10% chance to return original
if probablity < 0.2:
include_v3 = False
include_v4_des = False
include_original = True
elif probablity < 1.0:
include_v3 = False
include_v4_des = True
include_original = True
else:
return caption, target, None
# 1. do somme preprocessing; extract the subcaptions
original_caption = deepcopy(caption)
original_target = deepcopy(target)
# parse the GPT outputstart_index = 0
start_index = 0
for i in range(len(caption)):
if caption[i] == "." or caption[i] == "?":
subcaption_i = caption[start_index:i+1]
subcaptions.append(subcaption_i)
start_index = i + 1
if start_index != len(caption):
# some remaining stuff
subcaption_i = caption[start_index:]
if subcaption_i.strip() != "":
subcaptions.append(subcaption_i)
original_subcaptions = deepcopy(subcaptions) # keep a copy of the original subcaptions
for box in target:
box['tokens_positive'] = self.merge_token_posivie(box['tokens_positive']) # merge the tokens_positive if they happen to be continuous
if self.include_v3_augmentation and include_v3:
# 1. get the categories mentioned in the caption
all_nouns = []
for box_index, box in enumerate(target):
for start, end in box["tokens_positive"]:
if "nouns" in box:
all_nouns.extend(box["nouns"]) # if we pre-extract the nouns, we can use them
else:
all_nouns.extend(caption[start:end].split(" ")) # otherwise, we just use the tokens_positive and do a split by " "
all_nouns = list(set(all_nouns))
#####
# shuffle
random.shuffle(all_nouns)
for noun in all_nouns:
frequency = self.get_freq(noun)
if frequency > 10000 or frequency == 0:
continue
positive_span, centern_noun_lenghth, span_locations = self.form_span(noun)
# find the noun in the caption
start_i = original_caption.find(noun)
end_i = start_i + len(noun)
# add the positive span to the caption
caption, subcaptions_noun, target = self._change_target(
start_original_span = start_i,
end_original_span = end_i,
description = positive_span,
target = target,
caption = caption,
centern_noun_lenghth=centern_noun_lenghth)
if len(subcaptions_noun) != 0:
subcaptions.extend(subcaptions_noun)
# do the augmentation
_tmp_negs = []
for similar_thing in self.get_similar_things(noun):
frequency = self.get_freq(similar_thing)
if frequency > 10000 or frequency == 0:
continue # did not find the noun in the vocab
negative_span, _, span_locations = self.form_span(similar_thing)
negative_captions.append(negative_span)
_tmp_negs.append(negative_span)
grouping_subcaptions["v3"].append((positive_span, _tmp_negs))
if gpt3_outputs is None:
gpt3_outputs = {}
ban_list = ['man', "woman", "child", "men", "women", "children", "people", "person"]
for key, value in gpt3_outputs.items():
try:
gpt_result = self.simple_gpt_parser(value)
for key_phrase, description_i in gpt_result["pos_description"].items():
# find the location of the span
start_i = caption.find(key_phrase)
end_i = start_i + len(key_phrase)
description_i = description_i + ". " if description_i[-1] != "." else description_i
if random.random() < 0.5:
description_i = key_phrase + ", " + description_i
center_ = 2
else:
center_ = 1
# find the center noun
center_length = len(",".join(description_i.split(",")[:center_]))
# else:
# center_length = len(description_i)
# find if there is a match
matched_i = False
skip_i = False
for ban_noun in ban_list:
if ban_noun in key_phrase:
skip_i = True
break
if skip_i:
continue
for box_index, box in enumerate(target):
for start, end in box["tokens_positive"]:
# if the tokens_positive is within the span or it contains the span
if (start_i <= start and end <= end_i) or (start <= start_i and end_i <= end):
# add the description to the positive_text_pieces
# mark the matching between this box and this new subcaption # need to think later
# TODO: support partial match
box['tokens_positive'].append((len(caption), len(caption) + center_length))
matched_i = True
if matched_i and include_v4_des:
# add the description to the caption
caption += description_i
subcaptions.append(description_i)
negative_captions.extend(list(gpt_result["neg_description"].values()))
grouping_subcaptions["v4_des"].append((description_i, list(gpt_result["neg_description"].values())))
# the rest are negative captions
negative_captions.extend(gpt_result["neg_captions"])
grouping_subcaptions["original"].append((key, gpt_result["neg_captions"]))
except:
pass
for i in range(len(negative_captions)):
if negative_captions[i].endswith(".") or negative_captions[i].endswith("?"):
negative_captions[i] = negative_captions[i] + " "
elif negative_captions[i].endswith(". ") or negative_captions[i].endswith("? "):
pass
else:
negative_captions[i] = negative_captions[i] + ". "
for value in grouping_subcaptions.values():
for caps in value:
for index in range(len(caps[1])):
if caps[1][index].endswith(".") or caps[1][index].endswith("?"):
caps[1][index] = caps[1][index] + " "
elif caps[1][index].endswith(". ") or caps[1][index].endswith("? "):
pass
else:
caps[1][index] = caps[1][index] + ". "
if "drop_positive" in self.caption_augmentation_version:
drop_positive_rate = 0.5
if random.random() < 0.1: # 10% drop all the positive
drop_positive_rate = 1.0
drop_negative_rate = 0.0
else:
drop_positive_rate = 0.0
drop_negative_rate = 0.0
if len(subcaptions) == 0 and len(negative_captions) == 0:
return original_caption, original_target, None
if "control_pos" in self.caption_augmentation_version:
# calculate on average how many captions we can afford here
sub_cap_mean_length = np.mean([len(i.split(" ")) for i in subcaptions])
neg_cap_mean_length = np.mean([len(i.split(" ")) for i in negative_captions])
mean_length = (sub_cap_mean_length * len(subcaptions) + neg_cap_mean_length * len(negative_captions)) / (len(subcaptions) + len(negative_captions))
if sub_cap_mean_length * len(subcaptions) + neg_cap_mean_length * len(negative_captions) > 200:
# need to drop some of the captions
max_cap_num = 180 // mean_length
else:
max_cap_num = -1
if "grouping" in self.caption_augmentation_version:
# dynamically determine the number of positive and negative captions
final_included_groups = []
if include_v3:
final_included_groups.extend(grouping_subcaptions["v3"])
if include_v4_des:
final_included_groups.extend(grouping_subcaptions["v4_des"])
if include_original:
final_included_groups.extend(grouping_subcaptions["original"])
# negative captions
grouped_positive_num = len(final_included_groups)
grouped_negative_num = sum([len(i[1]) for i in final_included_groups])
else:
grouped_positive_num = len(subcaptions)
grouped_negative_num = len(negative_captions)
# prefered captions
pos_num, neg_num = self.pos_rate_controller(grouped_positive_num, grouped_negative_num, max_cap_num=max_cap_num)
if "grouping" in self.caption_augmentation_version:
# do the preselection
preselected_captions = set()
preselected_captions_neg = set()
neg_counter = 0
# let's see if we need to drop some negative; do a preselection of negative captions
random.shuffle(final_included_groups)
for i in range(pos_num):
preselected_captions.add(final_included_groups[i][0])
if neg_counter < neg_num:
_tmp = random.randint(0, len(final_included_groups[i][1]))
preselected_captions_neg.update(final_included_groups[i][1][:_tmp])
neg_counter += _tmp
if neg_counter < neg_num:
random.shuffle(negative_captions)
preselected_captions_neg.update(negative_captions[:neg_num - neg_counter])
# print(include_v3, include_v4_des, include_original)
# print(preselected_captions)
# print(preselected_captions_neg)
# print(pos_num, neg_num)
# print("grouped", grouped_positive_num, grouped_negative_num)
# print("original", len(subcaptions), len(negative_captions))
preselected_captions.update(preselected_captions_neg)
else:
preselected_captions = None
augmented_caption, location_mapping, final_pos_num, final_neg_num = random_resemble_captions( subcaptions, negative_captions, pos_num, neg_num, tokenizer = self.tokenizer, preselected_captions= preselected_captions)
self.pos_rate_controller.update_true_pos_rate(final_pos_num, final_pos_num + final_neg_num)
# update the target
new_target = []
for box in target:
new_tokens_positive = []
for start, end in box["tokens_positive"]:
if start in location_mapping and end - 1 in location_mapping:
new_tokens_positive.append([location_mapping[start], location_mapping[end - 1] + 1]) # location of the character in the new string
if len(new_tokens_positive) > 0: # possible the caption was dropped
_box = deepcopy(box)
_box["tokens_positive"] = new_tokens_positive
new_target.append(_box)
original_spans = []
for box in target:
for start, end in box["tokens_positive"]:
original_spans.append(caption[start:end])
augmented_spans = []
for box in new_target:
for start, end in box["tokens_positive"]:
augmented_spans.append(augmented_caption[start:end])
if len(augmented_caption) == 0:
return original_caption, original_target, None
return augmented_caption, new_target, None
def find_noun_phrases(caption: str):
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = list()
for subtree in result.subtrees():
if subtree.label() == "NP":
noun_phrases.append(" ".join(t[0] for t in subtree.leaves()))
return noun_phrases
def random_resemble_captions(
captions, additional_captions, sub_sample_pos_num = -1, sub_sample_neg_num = -1, preselected_captions = None, tokenizer=None):
location_mapping = {}
indexes = list(range(len(captions) + len(additional_captions)))
all_captions = captions + additional_captions
random.shuffle(indexes)
# create a mapping between the original location and the new location
# 1. create a mapping from original index to their character location
original_index_to_location = defaultdict(list)
current_caption = ''
for i, caption in enumerate(captions):
current_len = len(current_caption)
for j in range(len(caption)):
original_index_to_location[i].append(current_len + j) # location of the character in the original string
current_caption += caption
#current_caption += '. '
# determind the kept indexes
if sub_sample_pos_num != -1:
pos_indexes = list(range(len(captions)))
if preselected_captions is not None:
pos_indexes = [i for i in pos_indexes if all_captions[i] in preselected_captions]
random.shuffle(pos_indexes)
kept_pos_indexes = set(pos_indexes[:sub_sample_pos_num])
else:
kept_pos_indexes = set(range(len(captions)))
if sub_sample_neg_num != -1:
neg_indexes = list(range(len(captions), len(captions) + len(additional_captions)))
if preselected_captions is not None:
neg_indexes = [i for i in neg_indexes if all_captions[i] in preselected_captions]
random.shuffle(neg_indexes)
kept_neg_indexes = set(neg_indexes[:sub_sample_neg_num])
else:
kept_neg_indexes = set(range(len(captions), len(captions) + len(additional_captions)))
kep_indexes = kept_pos_indexes | kept_neg_indexes
final_kept_positive = []
final_kept_negative = []
final_kep_indexes = []
# 2. create a mapping from original locations
length_limit = 254
current_caption = ""
# need to avoid calling the tokenizer too many times
for i in range(len(indexes)):
caption = all_captions[indexes[i]]
if indexes[i] not in kep_indexes: # will not be kept
continue
tokenized = tokenizer.tokenize(caption)
#tokenized = caption.split(" ")
length_limit -= len(tokenized)
if length_limit < 0:
break # we have reached the length limit
# if not caption.startswith(" "):
# current_caption += " "
current_len = len(current_caption)
if indexes[i] < len(captions): # means it is one of the original caption and we need to record location
for j in range(len(caption)):
location_mapping[ original_index_to_location[indexes[i]][j] ] = current_len + j # location of the character in the new string
current_caption += caption
if current_caption.endswith("."):
current_caption += ' '
elif current_caption.endswith("?"):
current_caption += ' '
elif current_caption.endswith(". ") or current_caption.endswith("? "):
pass
else:
current_caption += '. '
if indexes[i] in kept_pos_indexes:
final_kept_positive.append(caption)
else:
final_kept_negative.append(caption)
return current_caption, location_mapping, len(final_kept_positive), len(final_kept_negative)
|