import gradio from transformers import GPT2LMHeadModel, GPT2Tokenizer, AdamW from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "zaanind/gpt2_finetune_alpaca" tokenizer = GPT2Tokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token model = GPT2LMHeadModel.from_pretrained(model_name) def translate(text): prompt = f"[INST] translate this sentence to sinhala - {text} [/INST] sure,here the translation of the provided text - " input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, max_length=250, num_return_sequences=1) translation = tokenizer.decode(output[0], skip_special_tokens=True) return translation def nmtapifunc(text): text = translate(text) return text gradio_interface = gradio.Interface( fn=nmtapifunc, inputs="text", outputs="text", title="ZoomAI Inference Server", description="", article="© Zaanind 2023-2024" ) gradio_interface.launch()