import hazm from cleantext import clean import regex as re def cleanhtml(raw_html): cleanr = re.compile('<.*?>') cleantext = re.sub(cleanr, '', raw_html) return cleantext def cleaning(text): text = text.strip() # regular cleaning # https://pypi.org/project/clean-text/ >> works well for eng and de languages text = clean(text, fix_unicode=True, to_ascii=False, lower=True, no_line_breaks=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=False, no_digits=False, no_currency_symbols=True, no_punct=False, #Keep the punc replace_with_url="", replace_with_email="", replace_with_phone_number="", replace_with_number="", replace_with_digit="0", replace_with_currency_symbol="", ) # cleaning htmls text = cleanhtml(text) # normalizing > https://github.com/sobhe/hazm normalizer = hazm.Normalizer() text = normalizer.normalize(text) # removing wierd patterns wierd_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" u"\U0001f926-\U0001f937" u'\U00010000-\U0010ffff' u"\u200d" u"\u2640-\u2642" u"\u2600-\u2B55" u"\u23cf" u"\u23e9" u"\u231a" u"\u3030" u"\ufe0f" u"\u2069" u"\u2066" # u"\u200c" u"\u2068" u"\u2067" "]+", flags=re.UNICODE) text = wierd_pattern.sub(r'', text) # removing extra spaces, hashtags text = re.sub("#", "", text) text = re.sub("\s+", " ", text) return text