Spaces:
Runtime error
Runtime error
add the latest model
Browse files
app.py
CHANGED
@@ -5,96 +5,7 @@ import torch.nn as nn
|
|
5 |
import torch.nn.functional as F
|
6 |
import huggingface_hub
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
import
|
9 |
-
from cleantext import clean
|
10 |
-
import regex as re
|
11 |
-
|
12 |
-
huggingface_hub.Repository = 'zArabi/Persian-Sentiment-Analysis'
|
13 |
-
|
14 |
-
def cleanhtml(raw_html):
|
15 |
-
cleanr = re.compile('<.*?>')
|
16 |
-
cleantext = re.sub(cleanr, '', raw_html)
|
17 |
-
return cleantext
|
18 |
-
|
19 |
-
def cleaning(text):
|
20 |
-
text = text.strip()
|
21 |
-
|
22 |
-
# regular cleaning
|
23 |
-
# https://pypi.org/project/clean-text/ >> works well for eng and de languages
|
24 |
-
text = clean(text,
|
25 |
-
fix_unicode=True,
|
26 |
-
to_ascii=False,
|
27 |
-
lower=True,
|
28 |
-
no_line_breaks=True,
|
29 |
-
no_urls=True,
|
30 |
-
no_emails=True,
|
31 |
-
no_phone_numbers=True,
|
32 |
-
no_numbers=False,
|
33 |
-
no_digits=False,
|
34 |
-
no_currency_symbols=True,
|
35 |
-
no_punct=False, #Keep the punc
|
36 |
-
replace_with_url="",
|
37 |
-
replace_with_email="",
|
38 |
-
replace_with_phone_number="",
|
39 |
-
replace_with_number="",
|
40 |
-
replace_with_digit="0",
|
41 |
-
replace_with_currency_symbol="",
|
42 |
-
)
|
43 |
-
|
44 |
-
# cleaning htmls
|
45 |
-
text = cleanhtml(text)
|
46 |
-
|
47 |
-
# normalizing > https://github.com/sobhe/hazm
|
48 |
-
normalizer = hazm.Normalizer()
|
49 |
-
text = normalizer.normalize(text)
|
50 |
-
|
51 |
-
# removing wierd patterns
|
52 |
-
wierd_pattern = re.compile("["
|
53 |
-
u"\U0001F600-\U0001F64F" # emoticons
|
54 |
-
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
55 |
-
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
56 |
-
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
57 |
-
u"\U00002702-\U000027B0"
|
58 |
-
u"\U000024C2-\U0001F251"
|
59 |
-
u"\U0001f926-\U0001f937"
|
60 |
-
u'\U00010000-\U0010ffff'
|
61 |
-
u"\u200d"
|
62 |
-
u"\u2640-\u2642"
|
63 |
-
u"\u2600-\u2B55"
|
64 |
-
u"\u23cf"
|
65 |
-
u"\u23e9"
|
66 |
-
u"\u231a"
|
67 |
-
u"\u3030"
|
68 |
-
u"\ufe0f"
|
69 |
-
u"\u2069"
|
70 |
-
u"\u2066"
|
71 |
-
# u"\u200c"
|
72 |
-
u"\u2068"
|
73 |
-
u"\u2067"
|
74 |
-
"]+", flags=re.UNICODE)
|
75 |
-
|
76 |
-
text = wierd_pattern.sub(r'', text)
|
77 |
-
|
78 |
-
# removing extra spaces, hashtags
|
79 |
-
text = re.sub("#", "", text)
|
80 |
-
text = re.sub("\s+", " ", text)
|
81 |
-
|
82 |
-
return text
|
83 |
-
|
84 |
-
class SentimentModel(nn.Module):
|
85 |
-
def __init__(self, config):
|
86 |
-
super(SentimentModel, self).__init__()
|
87 |
-
self.bert = BertModel.from_pretrained(modelName, return_dict=False)
|
88 |
-
self.dropout = nn.Dropout(0.3)
|
89 |
-
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
90 |
-
|
91 |
-
def forward(self, input_ids, attention_mask):
|
92 |
-
_, pooled_output = self.bert(
|
93 |
-
input_ids=input_ids,
|
94 |
-
attention_mask=attention_mask)
|
95 |
-
pooled_output = self.dropout(pooled_output)
|
96 |
-
logits = self.classifier(pooled_output)
|
97 |
-
return logits
|
98 |
|
99 |
modelName = 'HooshvareLab/bert-fa-base-uncased'
|
100 |
class_names = ['negative', 'neutral', 'positive']
|
@@ -107,8 +18,10 @@ config = BertConfig.from_pretrained(
|
|
107 |
id2label=id2label,
|
108 |
label2id=label2id)
|
109 |
|
110 |
-
|
|
|
111 |
loaded_model = torch.load(downloadedModelFile,map_location="cpu")
|
|
|
112 |
|
113 |
|
114 |
tokenizer = BertTokenizer.from_pretrained(modelName)
|
@@ -129,7 +42,7 @@ def predict(text):
|
|
129 |
)
|
130 |
input_ids = encoding["input_ids"].to(device)
|
131 |
attention_mask = encoding["attention_mask"].to(device)
|
132 |
-
outputs = loaded_model
|
133 |
probs = F.softmax(outputs,dim=1)
|
134 |
values, indices = torch.max(probs, dim=1)
|
135 |
data = {
|
|
|
5 |
import torch.nn.functional as F
|
6 |
import huggingface_hub
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
+
from preprocessing import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
modelName = 'HooshvareLab/bert-fa-base-uncased'
|
11 |
class_names = ['negative', 'neutral', 'positive']
|
|
|
18 |
id2label=id2label,
|
19 |
label2id=label2id)
|
20 |
|
21 |
+
path="HooshvareLab-bert-fa-base-uncased-3class-best-epoch-weight-decay=.001.bin"
|
22 |
+
downloadedModelFile = hf_hub_download(repo_id="zArabi/Persian-Sentiment-Analysis", filename=path)
|
23 |
loaded_model = torch.load(downloadedModelFile,map_location="cpu")
|
24 |
+
loaded_model.eval()
|
25 |
|
26 |
|
27 |
tokenizer = BertTokenizer.from_pretrained(modelName)
|
|
|
42 |
)
|
43 |
input_ids = encoding["input_ids"].to(device)
|
44 |
attention_mask = encoding["attention_mask"].to(device)
|
45 |
+
outputs = loaded_model(input_ids, attention_mask)
|
46 |
probs = F.softmax(outputs,dim=1)
|
47 |
values, indices = torch.max(probs, dim=1)
|
48 |
data = {
|