Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import BertModel, BertConfig | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import huggingface_hub | |
from huggingface_hub import hf_hub_download | |
huggingface_hub.Repository = 'zArabi/Persian-Sentiment-Analysis' | |
class SentimentModel(nn.Module): | |
def __init__(self, config): | |
super(SentimentModel, self).__init__() | |
self.bert = BertModel.from_pretrained(modelName, return_dict=False) | |
self.dropout = nn.Dropout(0.3) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask) | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
return logits | |
modelName = 'HooshvareLab/bert-fa-base-uncased' | |
class_names = ['negative', 'neutral', 'positive'] | |
label2id = {label: i for i, label in enumerate(class_names)} | |
id2label = {v: k for k, v in label2id.items()} | |
config = BertConfig.from_pretrained( | |
modelName, | |
num_labels=len(class_names), | |
id2label=id2label, | |
label2id=label2id) | |
downloadedModelFile = hf_hub_download(repo_id="zArabi/Persian-Sentiment-Analysis", filename="persianModel") | |
loaded_model = torch.load(downloadedModelFile) | |
max_len=512 | |
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
def predict(text): | |
text = cleaning(text) | |
encoding = tokenizer.encode_plus( | |
sample_text, | |
max_length=max_len, | |
truncation=True, | |
padding="max_length", | |
add_special_tokens=True, # Add '[CLS]' and '[SEP]' | |
return_token_type_ids=True, | |
return_attention_mask=True, | |
return_tensors='pt', # Return PyTorch tensors | |
) | |
input_ids = encoding["input_ids"].to(device) | |
attention_mask = encoding["attention_mask"].to(device) | |
outputs = loaded_model (input_ids, attention_mask) | |
probs = F.softmax(outputs,dim=1) | |
values, indices = torch.max(probs, dim=1) | |
data = { | |
'comments': sample_text, | |
'preds': indices.cpu().numpy()[0], | |
'label': class_names[indices.cpu().numpy()[0]], | |
'probablities': {class_names[i] : round(probs[0][i].item(),3) for i in range(len(probs[0]))} | |
} | |
return {class_names[i] : round(probs[0][i].item(),3) for i in range(len(probs[0]))} | |
gr.Interface( | |
predict, | |
inputs=gr.Textbox(label="Explore your sentence!",lines=2, placeholder="Type Here..."), | |
outputs=gr.outputs.Label(num_top_classes=3), | |
title="How are feeling?!", | |
).launch() |