Spaces:
Runtime error
Runtime error
from transformers import BertModel | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SentimentModel(nn.Module): | |
def __init__(self, config): | |
super(SentimentModel, self).__init__() | |
self.bert = BertModel.from_pretrained(modelName, return_dict=False) | |
self.dropout = nn.Dropout(0.3) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, input_ids, attention_mask): | |
_, pooled_output = self.bert( | |
input_ids=input_ids, | |
attention_mask=attention_mask) | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
return logits |