Spaces:
Sleeping
Sleeping
app files
Browse files- .gitattributes +1 -0
- ML_model.py +76 -0
- app.py +71 -0
- final_model.sav +3 -0
- highlight_text.css +23 -0
- load_css.py +8 -0
- model_methods.py +45 -0
- requirements.txt +6 -0
- subreddit_icon.png +0 -0
- tts.csv +0 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.sav filter=lfs diff=lfs merge=lfs -text
|
ML_model.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from nltk.tokenize import RegexpTokenizer
|
4 |
+
from nltk.stem import WordNetLemmatizer
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
+
import re
|
8 |
+
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn.model_selection import GridSearchCV
|
11 |
+
from sklearn.pipeline import Pipeline
|
12 |
+
from sklearn.naive_bayes import MultinomialNB
|
13 |
+
|
14 |
+
import pickle
|
15 |
+
|
16 |
+
# import dataset 'full_post' that has been lemmatized
|
17 |
+
url = 'https://raw.githubusercontent.com/yxmauw/General_Assembly_Pub/main/project_3/cloud_app/tts.csv'
|
18 |
+
df = pd.read_csv(url, header=0)
|
19 |
+
|
20 |
+
# train-test-split
|
21 |
+
X = df['full_post'] # pd.series because dataframe format not friendly for word vectorization
|
22 |
+
y = df['subreddit']
|
23 |
+
|
24 |
+
# make sure target variable has equal representation on both train and test sets
|
25 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
26 |
+
test_size=.2,
|
27 |
+
stratify=y,
|
28 |
+
random_state=42)
|
29 |
+
|
30 |
+
# lemmatizing
|
31 |
+
def lemmatize_join(text):
|
32 |
+
tokenizer = RegexpTokenizer('[a-z]+', gaps=False) # instantiate tokenizer
|
33 |
+
lemmer = WordNetLemmatizer() # instantiate lemmatizer
|
34 |
+
return ' '.join([lemmer.lemmatize(w) for w in tokenizer.tokenize(text.lower())])
|
35 |
+
# lowercase, join back together with spaces so that word vectorizers can still operate
|
36 |
+
# on cell contents as strings
|
37 |
+
|
38 |
+
Z_train = X_train.apply(lemmatize_join)
|
39 |
+
|
40 |
+
# model instantiation
|
41 |
+
pipe_cvec_nb = Pipeline([
|
42 |
+
('cvec', CountVectorizer()),
|
43 |
+
('nb', MultinomialNB())
|
44 |
+
])
|
45 |
+
|
46 |
+
# word vectorizor parameters
|
47 |
+
features = [1000]
|
48 |
+
min_df = [3]
|
49 |
+
max_df = [.6]
|
50 |
+
ngrams = [(1,2)]
|
51 |
+
stop_words = ['english']
|
52 |
+
accent = ['unicode']
|
53 |
+
|
54 |
+
# naive bayes classifier parameters
|
55 |
+
alphas = [.5]
|
56 |
+
|
57 |
+
cvec_nb_params = [{'cvec__max_features': features,
|
58 |
+
'cvec__min_df': min_df,
|
59 |
+
'cvec__max_df': max_df,
|
60 |
+
'cvec__ngram_range': ngrams,
|
61 |
+
'cvec__lowercase': [False],
|
62 |
+
'cvec__stop_words': stop_words,
|
63 |
+
'cvec__strip_accents': accent,
|
64 |
+
'nb__alpha': alphas
|
65 |
+
}]
|
66 |
+
|
67 |
+
cvec_nb_gs = GridSearchCV(pipe_cvec_nb,
|
68 |
+
cvec_nb_params,
|
69 |
+
scoring='accuracy',
|
70 |
+
cv=5,
|
71 |
+
verbose=1,
|
72 |
+
n_jobs=-2)
|
73 |
+
|
74 |
+
cvec_nb_gs.fit(Z_train, y_train)
|
75 |
+
|
76 |
+
pickle.dump(cvec_nb_gs, open('final_model.sav', 'wb'))
|
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from model_methods import predict
|
6 |
+
import base64 # for title image
|
7 |
+
from load_css import local_css # for highlighting text
|
8 |
+
|
9 |
+
@st.cache # cached so that latency for subsequent runs are shorter
|
10 |
+
def import_nltk():
|
11 |
+
import nltk
|
12 |
+
nltk.download('wordnet')
|
13 |
+
nltk.download('omw-1.4')
|
14 |
+
|
15 |
+
# configuration of the page
|
16 |
+
st.set_page_config(
|
17 |
+
layout='centered',
|
18 |
+
page_icon=Image.open('project_3/cloud_app/subreddit_icon.png'),
|
19 |
+
page_title='Marvel vs. DC comics',
|
20 |
+
initial_sidebar_state='auto'
|
21 |
+
)
|
22 |
+
|
23 |
+
# embed source link in title image using base64 module
|
24 |
+
# reference: https://discuss.streamlit.io/t/how-to-show-local-gif-image/3408/4
|
25 |
+
# reference: https://discuss.streamlit.io/t/local-image-button/5409/4
|
26 |
+
im = open("project_3/cloud_app/subreddit_icon.png", "rb")
|
27 |
+
contents = im.read()
|
28 |
+
im_base64 = base64.b64encode(contents).decode("utf-8")
|
29 |
+
im.close()
|
30 |
+
html = f'''<a href='https://www.reddit.com/'>
|
31 |
+
<img src='data:image/png;base64,{im_base64}' width='100'>
|
32 |
+
</a><figcaption>Credit: reddit.com</figcaption>'''
|
33 |
+
st.markdown(html, unsafe_allow_html=True)
|
34 |
+
|
35 |
+
st.title('Subreddit Post classifier')
|
36 |
+
local_css("project_3/cloud_app/highlight_text.css")
|
37 |
+
text = '''The algorithm driving this app is built using subreddit posts published
|
38 |
+
between April and July 2022. It is only able to classify between
|
39 |
+
<span class='highlight blue'> **Marvel** </span>
|
40 |
+
and
|
41 |
+
<span class='highlight blue'> **DC Comics** </span>
|
42 |
+
subreddits.'''
|
43 |
+
st.markdown(text, unsafe_allow_html=True)
|
44 |
+
|
45 |
+
# Area for text input
|
46 |
+
import_nltk() # import nltk module if not yet cached in local computer
|
47 |
+
new_post = st.text_input('Please copy and paste the subreddit post here', '')
|
48 |
+
|
49 |
+
# process new input
|
50 |
+
def predict_post():
|
51 |
+
data = pd.Series(new_post) # pd.Series format new input coz that is the format that predict() recognises
|
52 |
+
result = predict(data)
|
53 |
+
if result == 1:
|
54 |
+
post = 'Marvel'
|
55 |
+
if result == 0:
|
56 |
+
post = 'DC comics'
|
57 |
+
st.write(f'### This post belongs to')
|
58 |
+
st.success(f'# {post}')
|
59 |
+
st.write(f'### subreddit')
|
60 |
+
|
61 |
+
# instantiate submit button
|
62 |
+
if st.button('Submit'):
|
63 |
+
with st.sidebar:
|
64 |
+
try:
|
65 |
+
predict_post()
|
66 |
+
except:
|
67 |
+
st.warning('''
|
68 |
+
Unable to detect text.
|
69 |
+
Please enter text for prediction.
|
70 |
+
\n\n Thank you 🙏.
|
71 |
+
''')
|
final_model.sav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3de8644a134575272a6109b86efca56ec19c92060070e1588cb749dfe01fa3e1
|
3 |
+
size 1015414
|
highlight_text.css
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.highlight {
|
2 |
+
border-radius: 0.4rem;
|
3 |
+
color: white;
|
4 |
+
padding: 0.2rem;
|
5 |
+
margin-bottom: 1rem;
|
6 |
+
}
|
7 |
+
|
8 |
+
.bold {
|
9 |
+
padding-left: 1rem;
|
10 |
+
font-weight: 700;
|
11 |
+
}
|
12 |
+
|
13 |
+
.blue {
|
14 |
+
background-color: steelblue;
|
15 |
+
}
|
16 |
+
|
17 |
+
.yellow {
|
18 |
+
background-color: goldenrod;
|
19 |
+
}
|
20 |
+
|
21 |
+
.red {
|
22 |
+
background-color: lightcoral;
|
23 |
+
}
|
load_css.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
https://discuss.streamlit.io/t/are-you-using-html-in-markdown-tell-us-why/96/25
|
3 |
+
"""
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
def local_css(file_name):
|
7 |
+
with open(file_name) as f:
|
8 |
+
st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True)
|
model_methods.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from nltk.tokenize import RegexpTokenizer
|
4 |
+
from nltk.stem import WordNetLemmatizer
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
import re
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
# lemmatizing
|
12 |
+
def lemmatize_join(text):
|
13 |
+
tokenizer = RegexpTokenizer('[a-z]+', gaps=False) # instantiate tokenizer
|
14 |
+
lemmer = WordNetLemmatizer() # instantiate lemmatizer
|
15 |
+
return ' '.join([lemmer.lemmatize(w) for w in tokenizer.tokenize(text.lower())])
|
16 |
+
# lowercase, join back together with spaces so that word vectorizers can still operate
|
17 |
+
# on cell contents as strings
|
18 |
+
|
19 |
+
def predict(new_data):
|
20 |
+
# lemmatize new data
|
21 |
+
Z_data = new_data.apply(lemmatize_join)
|
22 |
+
|
23 |
+
# countvectorize new data
|
24 |
+
# import dataset 'full_post' that has been lemmatized
|
25 |
+
url = 'https://raw.githubusercontent.com/yxmauw/General_Assembly_Pub/main/project_3/cloud_app/tts.csv'
|
26 |
+
df = pd.read_csv(url, header=0)
|
27 |
+
|
28 |
+
# train-test-split
|
29 |
+
X = df['full_post'] # pd.series because dataframe format not friendly for word vectorization
|
30 |
+
y = df['subreddit']
|
31 |
+
|
32 |
+
# make sure target variable has equal representation on both train and test sets
|
33 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y,
|
34 |
+
test_size=.2,
|
35 |
+
stratify=y,
|
36 |
+
random_state=42)
|
37 |
+
cvec = CountVectorizer()
|
38 |
+
Z_train = X_train.apply(lemmatize_join) # lemmatize training data
|
39 |
+
cvec.fit(Z_train) # fit on lemmatized training data set
|
40 |
+
cvec.transform(Z_data) # transform new data
|
41 |
+
|
42 |
+
with open('project_3/cloud_app/final_model.sav','rb') as f:
|
43 |
+
model = pickle.load(f)
|
44 |
+
pred = model.predict(Z_data)
|
45 |
+
return pred
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.11.1
|
2 |
+
scikit-learn==1.0.2
|
3 |
+
pandas==1.4.2
|
4 |
+
numpy==1.21.5
|
5 |
+
pillow==9.0.1
|
6 |
+
nltk==3.7
|
subreddit_icon.png
ADDED
tts.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|