eye-disease-clf-app / model_methods.py
yxmauw's picture
add app files
15cafec
raw
history blame
6.24 kB
# reference https://stackoverflow.com/questions/69134379/how-to-make-prediction-based-on-model-tensorflow-lite
import numpy as np
import tensorflow as tf
import streamlit as st
from PIL import Image
import io
import matplotlib.pyplot as plt
import keras.backend as K # F1 score metric custom object
import cv2 # Activation heatmap
def predict(image): # to predict raw image input
interpreter = tf.lite.Interpreter('ENet_model.tflite')
interpreter.allocate_tensors()
#get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Read the image and decode to a tensor
img = Image.open(io.BytesIO(image.read()))
img = img.convert('RGB')
# Resize the image to the desired size
img = img.resize((160,160))
img = tf.keras.preprocessing.image.img_to_array(img)
#Preprocess the image to required size and cast
#input_shape = input_details[0]['shape']
input_tensor= np.array(np.expand_dims(img,0), dtype=np.float32)
input_tensor= tf.keras.applications.efficientnet_v2.preprocess_input(input_tensor)
#set the tensor to point to the input data to be inferred
# Invoke the model on the input data
interpreter.set_tensor(input_details[0]['index'], input_tensor)
#Run the inference
interpreter.invoke()
output_details = interpreter.get_tensor(output_details[0]['index'])
return output_details
def orig_img(image):
img = Image.open(io.BytesIO(image.read()))
img = img.convert('RGB')
# Resize the image to the desired size
img = img.resize((160,160))
img = tf.keras.preprocessing.image.img_to_array(img)
#Preprocess the image to required size and cast
#input_shape = input_details[0]['shape']
input_array= np.array(np.expand_dims(img,0), dtype=np.float32)
input_array= tf.keras.applications.efficientnet_v2.preprocess_input(input_array)
input_tensor = tf.convert_to_tensor(input_array) # convert array to tensor
return input_tensor # output tensor format of image
def normalize_image(img): #normalise image
grads_norm = img[:,:,0]+ img[:,:,1]+ img[:,:,2]
grads_norm = (grads_norm - tf.reduce_min(grads_norm))/ (tf.reduce_max(grads_norm)- tf.reduce_min(grads_norm))
return grads_norm
# see this for cmap options: https://matplotlib.org/stable/tutorials/colors/colormaps.html
def plot_maps(img1, img2,vmin=0.3,vmax=0.7, mix_val=2): # saliency map
fig, ax = plt.subplots(figsize=(3.3,3.3))
ax.imshow(img1*mix_val+img2/mix_val, cmap = "terrain" )
plt.axis("off")
fig.savefig("temp_fig.png", transparent=True, frameon=False, bbox_inches='tight', pad_inches = 0)
image = Image.open('temp_fig.png')
st.image(image)
#st.pyplot(fig)
def f1_score(y_true, y_pred): #taken from old keras source code
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
recall = true_positives / (possible_positives + K.epsilon())
f1_val = 2*(precision*recall)/(precision+recall+K.epsilon())
return f1_val
# load full Saved model for Saliency and activation maps, unable to use tf lite model for these unless previously specified upon model construct
model = tf.keras.models.load_model("ENet_ep20_val0.311",
custom_objects={'f1_score': f1_score})
def plot_gradient_maps(input_im): # plot_maps() and predict() function embedded
with tf.GradientTape() as tape:
tape.watch(input_im)
result_img = model(input_im)
max_idx = tf.argmax(result_img,axis = 1)
max_score = tf.math.reduce_max(result_img[0,max_idx[0]]) # tensor max probability
grads = tape.gradient(max_score, input_im)
plot_maps(normalize_image(grads[0]), normalize_image(input_im[0]))
# Activation heatmap
def gradCAM(orig, intensity=0.5, res=270): # function
img = Image.open(io.BytesIO(orig.getvalue()))
img = img.convert('RGB')
# Resize the image to the desired size
img = img.resize((160,160))
x = tf.keras.preprocessing.image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = tf.keras.applications.efficientnet_v2.preprocess_input(x) # shape (1,160,160,3)
with tf.GradientTape() as tape: # Grad-CAM process
last_conv_layer = model.get_layer('top_conv')
iterate = tf.keras.models.Model([model.inputs], [model.output, last_conv_layer.output]) # create mini model function to get model output
model_out, last_conv_layer = iterate(x) # model_out shape (1,4)
class_out = model_out[:, np.argmax(model_out[0])]
grads = tape.gradient(class_out, last_conv_layer)
pooled_grads = K.mean(grads, axis=(0, 1, 2))
heatmap = tf.reduce_mean(tf.multiply(pooled_grads, last_conv_layer), axis=-1)
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap) # minmax pixel values (0,1)
heatmap = heatmap.reshape((5, 5)) # reshape to 5x5 array
# img = cv2.imread(orig) # numpy array
img = Image.open(io.BytesIO(orig.getvalue()))
img = img.convert('RGB')
# Resize the image to the desired size
img = img.resize((160,160))
img = tf.keras.preprocessing.image.img_to_array(img)
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
heatmap = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET) # multiply 255 to convert to RGB form
img = heatmap * intensity + img
img1 = cv2.resize(img, (res, res)) # visualise heatmap overlay
cv2.imwrite('temporary.jpg', img1) # store image as a temporary file for st.image to interpret, unable to direct load from st.image(img1)
st.image('temporary.jpg')