from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import torch from diffusers import StableDiffusionPipeline from diffusers.models import AutoencoderKL from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg from diffusers.schedulers import KarrasDiffusionSchedulers from tqdm import tqdm from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor from config import Range from models.unet_2d_condition import FreeUUNet2DConditionModel class CrossImageAttentionStableDiffusionPipeline(StableDiffusionPipeline): """ A modification of the standard StableDiffusionPipeline to incorporate our cross-image attention.""" def __init__(self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: FreeUUNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True): super().__init__( vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker ) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, swap_guidance_scale: float = 1.0, cross_image_attention_range: Range = Range(10, 90), # DDPM addition zs: Optional[List[torch.Tensor]] = None ): # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs[0].shape[0]:])} timesteps = timesteps[-zs[0].shape[0]:] # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order op = tqdm(timesteps[-zs[0].shape[0]:]) n_timesteps = len(timesteps[-zs[0].shape[0]:]) count = 0 for t in op: i = t_to_idx[int(t)] # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) noise_pred_swap = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs={'perform_swap': True}, return_dict=False, )[0] noise_pred_no_swap = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs={'perform_swap': False}, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: _, noise_swap_pred_text = noise_pred_swap.chunk(2) noise_no_swap_pred_uncond, _ = noise_pred_no_swap.chunk(2) noise_pred = noise_no_swap_pred_uncond + guidance_scale * ( noise_swap_pred_text - noise_no_swap_pred_uncond) else: is_cross_image_step = cross_image_attention_range.start <= i <= cross_image_attention_range.end if swap_guidance_scale > 1.0 and is_cross_image_step: swapping_strengths = np.linspace(swap_guidance_scale, max(swap_guidance_scale / 2, 1.0), n_timesteps) swapping_strength = swapping_strengths[count] noise_pred = noise_pred_no_swap + swapping_strength * (noise_pred_swap - noise_pred_no_swap) noise_pred = rescale_noise_cfg(noise_pred, noise_pred_swap, guidance_rescale=guidance_rescale) else: noise_pred = noise_pred_swap latents = torch.stack([ self.perform_ddpm_step(t_to_idx, zs[latent_idx], latents[latent_idx], t, noise_pred[latent_idx], eta) for latent_idx in range(latents.shape[0]) ]) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): # progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) count += 1 if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) def perform_ddpm_step(self, t_to_idx, zs, latents, t, noise_pred, eta): idx = t_to_idx[int(t)] z = zs[idx] if not zs is None else None # 1. get previous step value (=t-1) prev_timestep = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps # 2. compute alphas, betas alpha_prod_t = self.scheduler.alphas_cumprod[t] alpha_prod_t_prev = self.scheduler.alphas_cumprod[ prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) # variance = self.scheduler._get_variance(timestep, prev_timestep) variance = self.get_variance(t) std_dev_t = eta * variance ** (0.5) # Take care of asymetric reverse process (asyrp) model_output_direction = noise_pred # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction # 8. Add noice if eta > 0 if eta > 0: if z is None: z = torch.randn(noise_pred.shape, device=self.device) sigma_z = eta * variance ** (0.5) * z prev_sample = prev_sample + sigma_z return prev_sample def get_variance(self, timestep): prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps alpha_prod_t = self.scheduler.alphas_cumprod[timestep] alpha_prod_t_prev = self.scheduler.alphas_cumprod[ prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance