Spaces:
Runtime error
Runtime error
File size: 11,709 Bytes
82ef366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import abc
import torch
from torch import inference_mode
from tqdm import tqdm
"""
Inversion code taken from:
1. The official implementation of Edit-Friendly DDPM Inversion: https://github.com/inbarhub/DDPM_inversion
2. The LEDITS demo: https://huggingface.co./spaces/editing-images/ledits/tree/main
"""
LOW_RESOURCE = True
def invert(x0, pipe, prompt_src="", num_diffusion_steps=100, cfg_scale_src=3.5, eta=1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
pipe.scheduler.set_timesteps(num_diffusion_steps)
with inference_mode():
w0 = (pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
wt, zs, wts = inversion_forward_process(pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src,
prog_bar=True, num_inference_steps=num_diffusion_steps)
return zs, wts
def inversion_forward_process(model, x0,
etas=None,
prog_bar=False,
prompt="",
cfg_scale=3.5,
num_inference_steps=50, eps=None
):
if not prompt == "":
text_embeddings = encode_text(model, prompt)
uncond_embedding = encode_text(model, "")
timesteps = model.scheduler.timesteps.to(model.device)
variance_noise_shape = (
num_inference_steps,
model.unet.in_channels,
model.unet.sample_size,
model.unet.sample_size)
if etas is None or (type(etas) in [int, float] and etas == 0):
eta_is_zero = True
zs = None
else:
eta_is_zero = False
if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps
xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps)
alpha_bar = model.scheduler.alphas_cumprod
zs = torch.zeros(size=variance_noise_shape, device=model.device)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xt = x0
op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps)
for t in op:
idx = t_to_idx[int(t)]
# 1. predict noise residual
if not eta_is_zero:
xt = xts[idx][None]
with torch.no_grad():
out = model.unet.forward(xt, timestep=t, encoder_hidden_states=uncond_embedding)
if not prompt == "":
cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states=text_embeddings)
if not prompt == "":
## classifier free guidance
noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
else:
noise_pred = out.sample
if eta_is_zero:
# 2. compute more noisy image and set x_t -> x_t+1
xt = forward_step(model, noise_pred, t, xt)
else:
xtm1 = xts[idx + 1][None]
# pred of x0
pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
# direction to xt
prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
variance = get_variance(model, t)
pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5)
zs[idx] = z
# correction to avoid error accumulation
xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z
xts[idx + 1] = xtm1
if not zs is None:
zs[-1] = torch.zeros_like(zs[-1])
return xt, zs, xts
def encode_text(model, prompts):
text_input = model.tokenizer(
prompts,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
return text_encoding
def sample_xts_from_x0(model, x0, num_inference_steps=50):
"""
Samples from P(x_1:T|x_0)
"""
# torch.manual_seed(43256465436)
alpha_bar = model.scheduler.alphas_cumprod
sqrt_one_minus_alpha_bar = (1 - alpha_bar) ** 0.5
alphas = model.scheduler.alphas
betas = 1 - alphas
variance_noise_shape = (
num_inference_steps,
model.unet.in_channels,
model.unet.sample_size,
model.unet.sample_size)
timesteps = model.scheduler.timesteps.to(model.device)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(variance_noise_shape).to(x0.device)
for t in reversed(timesteps):
idx = t_to_idx[int(t)]
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
xts = torch.cat([xts, x0], dim=0)
return xts
def forward_step(model, model_output, timestep, sample):
next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)
# 2. compute alphas, betas
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
next_sample = model.scheduler.add_noise(pred_original_sample,
model_output,
torch.LongTensor([next_timestep]))
return next_sample
def get_variance(model, timestep):
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = model.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return self.num_att_layers if LOW_RESOURCE else 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if LOW_RESOURCE:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in
self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
def register_attention_control(model, controller):
def ca_forward(self, place_in_unet):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(x, context=None, mask=None):
batch_size, sequence_length, dim = x.shape
h = self.heads
q = self.to_q(x)
is_cross = context is not None
context = context if is_cross else x
k = self.to_k(context)
v = self.to_v(context)
q = self.reshape_heads_to_batch_dim(q)
k = self.reshape_heads_to_batch_dim(k)
v = self.reshape_heads_to_batch_dim(v)
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
if mask is not None:
mask = mask.reshape(batch_size, -1)
max_neg_value = -torch.finfo(sim.dtype).max
mask = mask[:, None, :].repeat(h, 1, 1)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
attn = controller(attn, is_cross, place_in_unet)
out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = self.reshape_batch_dim_to_heads(out)
return to_out(out)
return forward
class DummyController:
def __call__(self, *args):
return args[0]
def __init__(self):
self.num_att_layers = 0
if controller is None:
controller = DummyController()
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'CrossAttention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = model.unet.named_children()
for net in sub_nets:
if "down" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "up" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "mid" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
|