File size: 11,709 Bytes
82ef366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import abc

import torch
from torch import inference_mode
from tqdm import tqdm

"""
Inversion code taken from: 
1. The official implementation of Edit-Friendly DDPM Inversion: https://github.com/inbarhub/DDPM_inversion
2. The LEDITS demo: https://huggingface.co./spaces/editing-images/ledits/tree/main
"""

LOW_RESOURCE = True


def invert(x0, pipe, prompt_src="", num_diffusion_steps=100, cfg_scale_src=3.5, eta=1):
    #  inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
    #  based on the code in https://github.com/inbarhub/DDPM_inversion
    #  returns wt, zs, wts:
    #  wt - inverted latent
    #  wts - intermediate inverted latents
    #  zs - noise maps
    pipe.scheduler.set_timesteps(num_diffusion_steps)
    with inference_mode():
        w0 = (pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
    wt, zs, wts = inversion_forward_process(pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src,
                                            prog_bar=True, num_inference_steps=num_diffusion_steps)
    return zs, wts


def inversion_forward_process(model, x0,
                              etas=None,
                              prog_bar=False,
                              prompt="",
                              cfg_scale=3.5,
                              num_inference_steps=50, eps=None
                              ):
    if not prompt == "":
        text_embeddings = encode_text(model, prompt)
    uncond_embedding = encode_text(model, "")
    timesteps = model.scheduler.timesteps.to(model.device)
    variance_noise_shape = (
        num_inference_steps,
        model.unet.in_channels,
        model.unet.sample_size,
        model.unet.sample_size)
    if etas is None or (type(etas) in [int, float] and etas == 0):
        eta_is_zero = True
        zs = None
    else:
        eta_is_zero = False
        if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps
        xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps)
        alpha_bar = model.scheduler.alphas_cumprod
        zs = torch.zeros(size=variance_noise_shape, device=model.device)

    t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    xt = x0
    op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps)

    for t in op:
        idx = t_to_idx[int(t)]
        # 1. predict noise residual
        if not eta_is_zero:
            xt = xts[idx][None]

        with torch.no_grad():
            out = model.unet.forward(xt, timestep=t, encoder_hidden_states=uncond_embedding)
            if not prompt == "":
                cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states=text_embeddings)

        if not prompt == "":
            ## classifier free guidance
            noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
        else:
            noise_pred = out.sample

        if eta_is_zero:
            # 2. compute more noisy image and set x_t -> x_t+1
            xt = forward_step(model, noise_pred, t, xt)

        else:
            xtm1 = xts[idx + 1][None]
            # pred of x0
            pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5

            # direction to xt
            prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
            alpha_prod_t_prev = model.scheduler.alphas_cumprod[
                prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod

            variance = get_variance(model, t)
            pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred

            mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

            z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5)
            zs[idx] = z

            # correction to avoid error accumulation
            xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z
            xts[idx + 1] = xtm1

    if not zs is None:
        zs[-1] = torch.zeros_like(zs[-1])

    return xt, zs, xts


def encode_text(model, prompts):
    text_input = model.tokenizer(
        prompts,
        padding="max_length",
        max_length=model.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    with torch.no_grad():
        text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
    return text_encoding


def sample_xts_from_x0(model, x0, num_inference_steps=50):
    """
    Samples from P(x_1:T|x_0)
    """
    # torch.manual_seed(43256465436)
    alpha_bar = model.scheduler.alphas_cumprod
    sqrt_one_minus_alpha_bar = (1 - alpha_bar) ** 0.5
    alphas = model.scheduler.alphas
    betas = 1 - alphas
    variance_noise_shape = (
        num_inference_steps,
        model.unet.in_channels,
        model.unet.sample_size,
        model.unet.sample_size)

    timesteps = model.scheduler.timesteps.to(model.device)
    t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    xts = torch.zeros(variance_noise_shape).to(x0.device)
    for t in reversed(timesteps):
        idx = t_to_idx[int(t)]
        xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
    xts = torch.cat([xts, x0], dim=0)

    return xts


def forward_step(model, model_output, timestep, sample):
    next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
                        timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)

    # 2. compute alphas, betas
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
    next_sample = model.scheduler.add_noise(pred_original_sample,
                                            model_output,
                                            torch.LongTensor([next_timestep]))
    return next_sample


def get_variance(model, timestep):
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[
        prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev
    variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
    return variance


class AttentionControl(abc.ABC):

    def step_callback(self, x_t):
        return x_t

    def between_steps(self):
        return

    @property
    def num_uncond_att_layers(self):
        return self.num_att_layers if LOW_RESOURCE else 0

    @abc.abstractmethod
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if self.cur_att_layer >= self.num_uncond_att_layers:
            if LOW_RESOURCE:
                attn = self.forward(attn, is_cross, place_in_unet)
            else:
                h = attn.shape[0]
                attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            self.between_steps()
        return attn

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0


class AttentionStore(AttentionControl):

    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [],
                "down_self": [], "mid_self": [], "up_self": []}

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        if attn.shape[1] <= 32 ** 2:  # avoid memory overhead
            self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        if len(self.attention_store) == 0:
            self.attention_store = self.step_store
        else:
            for key in self.attention_store:
                for i in range(len(self.attention_store[key])):
                    self.attention_store[key][i] += self.step_store[key][i]
        self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in
                             self.attention_store}
        return average_attention

    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self):
        super(AttentionStore, self).__init__()
        self.step_store = self.get_empty_store()
        self.attention_store = {}


def register_attention_control(model, controller):
    def ca_forward(self, place_in_unet):
        to_out = self.to_out
        if type(to_out) is torch.nn.modules.container.ModuleList:
            to_out = self.to_out[0]
        else:
            to_out = self.to_out

        def forward(x, context=None, mask=None):
            batch_size, sequence_length, dim = x.shape
            h = self.heads
            q = self.to_q(x)
            is_cross = context is not None
            context = context if is_cross else x
            k = self.to_k(context)
            v = self.to_v(context)
            q = self.reshape_heads_to_batch_dim(q)
            k = self.reshape_heads_to_batch_dim(k)
            v = self.reshape_heads_to_batch_dim(v)

            sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

            if mask is not None:
                mask = mask.reshape(batch_size, -1)
                max_neg_value = -torch.finfo(sim.dtype).max
                mask = mask[:, None, :].repeat(h, 1, 1)
                sim.masked_fill_(~mask, max_neg_value)

            # attention, what we cannot get enough of
            attn = sim.softmax(dim=-1)
            attn = controller(attn, is_cross, place_in_unet)
            out = torch.einsum("b i j, b j d -> b i d", attn, v)
            out = self.reshape_batch_dim_to_heads(out)
            return to_out(out)

        return forward

    class DummyController:

        def __call__(self, *args):
            return args[0]

        def __init__(self):
            self.num_att_layers = 0

    if controller is None:
        controller = DummyController()

    def register_recr(net_, count, place_in_unet):
        if net_.__class__.__name__ == 'CrossAttention':
            net_.forward = ca_forward(net_, place_in_unet)
            return count + 1
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                count = register_recr(net__, count, place_in_unet)
        return count

    cross_att_count = 0
    sub_nets = model.unet.named_children()
    for net in sub_nets:
        if "down" in net[0]:
            cross_att_count += register_recr(net[1], 0, "down")
        elif "up" in net[0]:
            cross_att_count += register_recr(net[1], 0, "up")
        elif "mid" in net[0]:
            cross_att_count += register_recr(net[1], 0, "mid")

    controller.num_att_layers = cross_att_count