Thamaraikannan commited on
Commit
c32002f
·
1 Parent(s): 0282a33

fix: changed CMD in dokckerfile

Browse files
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ .env
2
+ .venv/
3
+ env/
4
+ venv/
app.py CHANGED
@@ -1,5 +1,6 @@
1
  from fastapi import FastAPI, Request
2
  from pydantic import BaseModel
 
3
 
4
  app = FastAPI()
5
 
@@ -12,9 +13,9 @@ class LabelScore(BaseModel):
12
 
13
  @app.post("/predict", response_model=LabelScore)
14
  async def predict(input: TextInput):
15
- label = "positive" if "good" in input.text else "negative"
16
- score = 0.9 if label == "positive" else 0.1
17
- return {"label": label, "score": score}
18
 
19
  @app.get("/")
20
  def read_root():
 
1
  from fastapi import FastAPI, Request
2
  from pydantic import BaseModel
3
+ from setfit import SetFitModel
4
 
5
  app = FastAPI()
6
 
 
13
 
14
  @app.post("/predict", response_model=LabelScore)
15
  async def predict(input: TextInput):
16
+ model = SetFitModel.from_pretrained("assets")
17
+ preds = model.predict(input)
18
+ return preds
19
 
20
  @app.get("/")
21
  def read_root():
assets/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
assets/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: BAAI/bge-base-en-v1.5
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: Dear GO FIRST Flyer, Comply with web-check in & state regulations on www.FlyGoFirst.com/wci.
13
+ Power banks are allowed ONLY in cabin baggage and NOT in check-in baggage.
14
+ - text: INR 415000.00 debited from DBS a/c no. ********1417 on 09-04-2022 to mishra
15
+ ji via NEFT (UTR Ref No 0811OP2104023743) will reach bene a/c usually within 2
16
+ hours.
17
+ - text: Your plan Rs 719-3m-2GB/D for Jio Number 8076716202 has expired on 12-Feb-23
18
+ 22:24 Hrs. To continue enjoying Jio services, recharge immediately. To recharge,
19
+ click https://www.jio.com/selfcare/recharge Dial 1991, to know your current balance,
20
+ validity, plan details and for exciting recharge plans.
21
+ - text: 'HDFC Bank: Rs 72.00 debited from a/c **0591 on 16-10-21 to VPA gpay-11169632313@okbizaxis(UPI
22
+ Ref No 128968285337). Not you? Call on 18002586161 to report'
23
+ - text: 'Get up to Rs.1K assured cashback & Rs.25K free credit with OlaMoney Postpaid+.
24
+ Use it across 15K+ apps, pay back in 30 days. Click : https://hello.ola.app/ompps'
25
+ pipeline_tag: text-classification
26
+ inference: true
27
+ model-index:
28
+ - name: SetFit with BAAI/bge-base-en-v1.5
29
+ results:
30
+ - task:
31
+ type: text-classification
32
+ name: Text Classification
33
+ dataset:
34
+ name: Unknown
35
+ type: unknown
36
+ split: test
37
+ metrics:
38
+ - type: accuracy
39
+ value: 0.9576271186440678
40
+ name: Accuracy
41
+ ---
42
+
43
+ # SetFit with BAAI/bge-base-en-v1.5
44
+
45
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
46
+
47
+ The model has been trained using an efficient few-shot learning technique that involves:
48
+
49
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
50
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** SetFit
56
+ - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
57
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
58
+ - **Maximum Sequence Length:** 512 tokens
59
+ - **Number of Classes:** 2 classes
60
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
67
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
68
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
69
+
70
+ ### Model Labels
71
+ | Label | Examples |
72
+ |:------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
73
+ | Offer | <ul><li>'Exclusive offer only for you.Recharge with Rs.49 to get 100min voice call,1GB data for 15 days.Hurry,recharge today.'</li><li>'Abhi *911# milaa kr payen Rs.25 advance loan aur phir *51# dial kren aur Rs. 10+T mei haasil kren, 500 MB aur 50 Zong Minutes puray din kay liye'</li><li>'HDFC BANK PERSONAL L0AN IndependenceDay offer 10.25% 0%PF FRESH LOAN / TOPUP LOAN / PARALLEL LOAN/BT Hurry! Apply - 8095227619 T&C* '</li></ul> |
74
+ | Transaction | <ul><li>'Dear Customer, your DBS account no ********1417 is credited with INR 25000 on 01-10-2021 and is subject to clearance. Current Balance is INR 58661.69.'</li><li>'Pls use IFSC BARB0*** instead of old IFSC VIJB** for remittances as old code will be discontinued wef 01.07.2021. Advise your remitters also-Bank of Baroda'</li><li>'Your Stock broker ZERODHA BROKING LIMITED. reported your fund balance Rs.26986.54 & securities balance 0 as on end of 09-oct-2021. Balances do not cover your bank, DP & PMS balance with broking entity. Check details at [email protected]. If email Id not correct, kindly update with your broker - National Stock Exchange'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Accuracy |
80
+ |:--------|:---------|
81
+ | **all** | 0.9576 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("setfit_model_id")
100
+ # Run inference
101
+ preds = model("HDFC Bank: Rs 72.00 debited from a/c **0591 on 16-10-21 to VPA gpay-11169632313@okbizaxis(UPI Ref No 128968285337). Not you? Call on 18002586161 to report")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:--------|:----|
133
+ | Word count | 3 | 26.7702 | 135 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------------|:----------------------|
137
+ | Transaction | 103 |
138
+ | Offer | 132 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (16, 16)
142
+ - num_epochs: (1, 1)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 1
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - seed: 42
155
+ - eval_max_steps: -1
156
+ - load_best_model_at_end: False
157
+
158
+ ### Training Results
159
+ | Epoch | Step | Training Loss | Validation Loss |
160
+ |:------:|:----:|:-------------:|:---------------:|
161
+ | 0.0333 | 1 | 0.2366 | - |
162
+
163
+ ### Framework Versions
164
+ - Python: 3.11.9
165
+ - SetFit: 1.0.3
166
+ - Sentence Transformers: 3.0.1
167
+ - Transformers: 4.39.0
168
+ - PyTorch: 2.3.1+cu121
169
+ - Datasets: 2.19.2
170
+ - Tokenizers: 0.15.2
171
+
172
+ ## Citation
173
+
174
+ ### BibTeX
175
+ ```bibtex
176
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
177
+ doi = {10.48550/ARXIV.2209.11055},
178
+ url = {https://arxiv.org/abs/2209.11055},
179
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
180
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
181
+ title = {Efficient Few-Shot Learning Without Prompts},
182
+ publisher = {arXiv},
183
+ year = {2022},
184
+ copyright = {Creative Commons Attribution 4.0 International}
185
+ }
186
+ ```
187
+
188
+ <!--
189
+ ## Glossary
190
+
191
+ *Clearly define terms in order to be accessible across audiences.*
192
+ -->
193
+
194
+ <!--
195
+ ## Model Card Authors
196
+
197
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
198
+ -->
199
+
200
+ <!--
201
+ ## Model Card Contact
202
+
203
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
204
+ -->
assets/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.39.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
assets/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
assets/config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Transaction",
5
+ "Offer"
6
+ ]
7
+ }
assets/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c926e4aa2d85d6628ea5999d939101b09bdf1910525b3a3c112b4bcf014c21d
3
+ size 437951328
assets/model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa9ed00840d3def363cf16611f73da64fd36ce69e4a6474132e615013eb4333f
3
+ size 7087
assets/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
assets/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
assets/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
assets/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
assets/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
assets/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ