|
|
|
|
|
import urllib.request |
|
import modal |
|
|
|
stub = modal.Stub("vit-gpt2-image-captioning") |
|
volume = modal.SharedVolume().persist("shared_vol") |
|
|
|
@stub.function( |
|
gpu="any", |
|
image=modal.Image.debian_slim().pip_install("Pillow", "transformers", "torch"), |
|
shared_volumes={"/root/model_cache": volume}, |
|
retries=3, |
|
) |
|
def predict(image): |
|
import io |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
import torch |
|
from PIL import Image |
|
|
|
model = VisionEncoderDecoderModel.from_pretrained( |
|
"nlpconnect/vit-gpt2-image-captioning" |
|
) |
|
feature_extractor = ViTImageProcessor.from_pretrained( |
|
"nlpconnect/vit-gpt2-image-captioning" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
input_img = Image.open(io.BytesIO(image)) |
|
pixel_values = feature_extractor( |
|
images=[input_img], return_tensors="pt" |
|
).pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds |
|
|
|
|
|
@stub.local_entrypoint() |
|
def main(): |
|
from pathlib import Path |
|
|
|
image_filepath = Path(__file__).parent / "sample.png" |
|
if image_filepath.exists(): |
|
with open(image_filepath, "rb") as f: |
|
image = f.read() |
|
else: |
|
try: |
|
image = urllib.request.urlopen( |
|
"https://drive.google.com/uc?id=0B0TjveMhQDhgLTlpOENiOTZ6Y00&export=download" |
|
).read() |
|
except urllib.error.URLError as e: |
|
print(e.reason) |
|
print(predict.call(image)[0]) |
|
|